• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Đề KT 1 tiết môn toán / Đề Kiểm Tra 1 tiết môn toán – Chương 1 Hình học 10 – số 2

Đề Kiểm Tra 1 tiết môn toán – Chương 1 Hình học 10 – số 2

Đăng ngày: 12/11/2019 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Đề KT 1 tiết môn toán, Toán lớp 10

Đề bài

Câu 1. Cho tứ giác lồi ABCD. Gọi M, N, P, Qlần lượt là trung điểm AB, BC, CD, DA. Chứng minh rằng

a.Chứng minh rằng \(\overrightarrow {MP}  = \dfrac{1 }{ 2}\left( {\overrightarrow {AD}  + \overrightarrow {BC} } \right)\) .

b.Hai tam giác ANP và CMQ có cùng trọng tâm.

Câu 2. Cho tam giác ABC. Xác định các điểm I, J sao cho

\(\overrightarrow {IA}  + 2\overrightarrow {IB}  = \overrightarrow 0 ,\)\(\,\overrightarrow {JA}  + \overrightarrow {JB}  + 2\overrightarrow {JC}  = \overrightarrow 0 \) .

Câu 3. Cho hai điểm cố định A, B. Tìm tập hợp các điểm M sao cho

\(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MA}  – \overrightarrow {MB} } \right|\) .

Câu 4. Trong mặt phẳng tọa độ Oxy cho ba điểm \(A(1;2), B(-3;-2), C(5;-1).\)

A.Chứng minh A, B, C là ba đỉnh của một tam giác.

b.Tìm tọa độ của véc tơ trung tuyến \(\overrightarrow {AM} \) của tam giác ABC.

c.Tìm tọa độ điểm D sao cho ABCD là hình bình hành.

Lời giải chi tiết

Câu 1.

Đề Kiểm Tra 1 tiết môn toán – Chương 1 Hình học 10 – số 2

a. \(\dfrac{1 }{2}\left( {\overrightarrow {AD}  + \overrightarrow {BC} } \right) \)

\(= \dfrac{1 }{ 2}\left( {\overrightarrow {AM}  + \overrightarrow {MP}  + \overrightarrow {PD}  + \overrightarrow {BM}  + \overrightarrow {MP}  + \overrightarrow {PC} } \right)\)

\( = \dfrac{1 }{ 2}\left( {2\overrightarrow {MP}  + \overrightarrow {AM}  + \overrightarrow {BM}  + \overrightarrow {PC}  + \overrightarrow {PD} } \right)\)

\(= \overrightarrow {MP} \)

b. Theo tính chất đường trung bình \(\overrightarrow {MN}  = \dfrac{1}{ 2}\overrightarrow {AC} ,\overrightarrow {PQ}  = \dfrac{1 }{2}\overrightarrow {AC} \) .

Gọi G là trọng tâm tam giác ANP. Ta có \(\overrightarrow {GA}  + \overrightarrow {GN}  + \overrightarrow {GP}  = \overrightarrow 0 \) .

Suy ra:

\(\overrightarrow {GC}  + \overrightarrow {GM}  + \overrightarrow {GQ}  \)

\(= \overrightarrow {GA}  + \overrightarrow {AC}  + \overrightarrow {GN}  + \overrightarrow {MN}  + \overrightarrow {GP}  + \overrightarrow {PQ} \)

\( = \overrightarrow {GA}  + \overrightarrow {GN}  + \overrightarrow {GP}  + \overrightarrow {AC}  – \dfrac{1 }{ 2}\overrightarrow {AC}  – \dfrac{1 }{ 2}\overrightarrow {AC}  = \overrightarrow 0 \)

Vậy G là trọng tâm tam giác CNQ.

Câu 2.

Ta có:

\(\eqalign{  & \overrightarrow {IA}  + 2\overrightarrow {IB}  = \overrightarrow 0 \cr& \Leftrightarrow \overrightarrow {IA}  + 2\left( {\overrightarrow {IA}  + \overrightarrow {AB} } \right) = \overrightarrow 0   \cr  & {\rm{                   }} \Leftrightarrow 3\overrightarrow {IA}  + 2\overrightarrow {AB}  \Leftrightarrow \overrightarrow {AI}  = {2 \over 3}\overrightarrow {AB}  \cr} \) .

Suy ra I là điểm trên cạnh AB sao cho \(AI = \dfrac{2 }{ 3}AB\).

Gọi K là trung điểm AB. Ta có

\(\overrightarrow {JA}  + \overrightarrow {JB}  + 2\overrightarrow {JC}  = \overrightarrow 0\)

\(  \Leftrightarrow 2\overrightarrow {JK}  + 2\overrightarrow {JC}  = \overrightarrow 0 \)

\(\Leftrightarrow \overrightarrow {JK}  + \overrightarrow {JC}  = \overrightarrow 0 \)

Suy ra J là trung điểm KC.

Đề Kiểm Tra 1 tiết môn toán – Chương 1 Hình học 10 – số 2

Câu 3.

Đề Kiểm Tra 1 tiết môn toán – Chương 1 Hình học 10 – số 2

Gọi O là trung điểm AB.

Ta có: \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = \left| {\overrightarrow {MA}  – \overrightarrow {MB} } \right| \)

\(\Leftrightarrow \left| {2\overrightarrow {MO} } \right| = \left| {\overrightarrow {BA} } \right|\)

\(\Leftrightarrow MO = \dfrac{1 }{ 2}AB\) .

M cách O cố định một đoạn không đổi bằng \(\dfrac{1 }{ 2}AB\) nên tập hợp các điểm M là đường trong tâm O bán kính \(\dfrac{1 }{2}AB\) hay có đường kính là AB.

Câu 4.

a.Ta có \(\overrightarrow {AB}  = \left( { – 4; – 4} \right),\overrightarrow {AC}  = \left( {4; – 3} \right)\) .

Mà \(\dfrac{{ – 4}}{{ – 4}} \ne \dfrac{{ – 4}}{{ – 3}}\) . Suy ra \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương.

Vậy A, B, C không thẳng hàng hay A, B, C là ba đỉnh của một tam giác.

b.Gọi M là trung điểm BC. Tọa độ của M là \(\left( {\dfrac{{{x_B} + {x_c}}}{2};\dfrac{{{y_B} + {y_C}}}{2}} \right) = \left( {1; – \dfrac{3}{2}} \right).\)

Suy ra \(\overrightarrow {AM}  = \left( {0; – {7 \over 2}} \right)\) .

c. ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {DC}  = \overrightarrow {AB} \) .

Mà \(\overrightarrow {DC}  = \left( {5 – {x_D}; – 1 – {y_D}} \right),\)\(\,\overrightarrow {AB}  = \left( { – 4, – 4} \right)\) .

Do đó \(\left\{ \matrix{  5 – {x_D} =  – 4 \hfill \cr   – 1 – {y_D} =  – 4 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  {x_D} = 9 \hfill \cr  {y_D} = 3 \hfill \cr}  \right.\) .

Vậy \(D = \left( {9;3} \right)\) .

Tag với:De kiem tra 1 tiet hinh hoc 10 chuong 1

Bài liên quan:

  • Đề Kiểm Tra 1 tiết môn toán – Chương 1 Hình học 10 – số 3
  • Đề Kiểm Tra 1 tiết môn toán – Chương 1 Hình học 10 – số 1
  • Đề Kiểm Tra 1 tiết môn Toán – Chương 1 Hình học 10

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.