• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Bài tập dãy số

Cho dãy số \(({u_n})\)thỏa mãn: \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \sqrt {\frac{2}{3}{u_n}^2 + \frac{{n – 2}}{{{n^2} + n}}} \end{array} \right.;\forall n \in N*\) Tìm công thức số hạng tổng quát của dãy số \(({u_n})\)và tính \(\lim {u_n}\).

Đăng ngày: 27/10/2021 Biên tập: admin Thuộc chủ đề:Bài tập dãy số Tag với:Dãy số HSG, On thi day so - cap so

Cho dãy số \(({u_n})\)thỏa mãn: \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \sqrt {\frac{2}{3}{u_n}^2 + \frac{{n - 2}}{{{n^2} + n}}} \end{array} \right.;\forall n \in N*\) Tìm công thức số hạng tổng quát của dãy số \(({u_n})\)và tính \(\lim {u_n}\). Lời giải +) Xét: \(u_{n + 1}^2 = \frac{2}{3}{u_n}^2 + \frac{{n - 2}}{{n(n + 1)}}\)\( = \frac{2}{3}.\left( … [Đọc thêm...] vềCho dãy số \(({u_n})\)thỏa mãn: \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \sqrt {\frac{2}{3}{u_n}^2 + \frac{{n – 2}}{{{n^2} + n}}} \end{array} \right.;\forall n \in N*\) Tìm công thức số hạng tổng quát của dãy số \(({u_n})\)và tính \(\lim {u_n}\).

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.