• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 10 / Bài 2. Hàm số y = ax + b – Chương 2 – Đại số 10

Bài 2. Hàm số y = ax + b – Chương 2 – Đại số 10

Ngày 28/10/2019 Thuộc chủ đề:Toán lớp 10 Tag với:Học chương 2 đại số 10

1. Kiến thức cần nhớ

a. Nhắc lại kiến thức hàm số bậc nhất

– Hàm số bậc nhất là hàm số được cho bằng biểu thức có dạng \(y = ax + b\) trong đó \(a\) và \(b\) là những hằng số với \(a \ne 0\).

– TXĐ: \(D = R\).

– Tính đơn điệu:

+) Nếu \(a > 0\) thì hàm số đồng biến trên \(R\).

+) Nếu \(a < 0\) thì hàm số nghịch biến trên \(R\).

– Đồ thị hàm số:

+) Là đường thẳng có hệ số góc \(a=\tan \alpha\) với $\alpha $ là góc tạo bởi tia $Ox$ và phần đồ thị hàm số ở phía trên trục hoành.

+) Cắt hai trục tọa độ lần lượt lại \(\left( {0;b} \right)\) và \(\left( { – \dfrac{b}{a};0} \right)\)

b. Hàm số \(y = \left| {ax + b} \right|\) với \(a \ne 0\)

– Là hợp của hai hàm số bậc nhất trên từng khoảng \(\left( { – \infty ; – \dfrac{b}{a}} \right)\) và \(\left( { – \dfrac{b}{a}; + \infty } \right)\).

– Cách vẽ đồ thị hàm số \(y = \left| {ax + b} \right|\) với \(a \ne 0\).

Vẽ hai đường thẳng \(y = ax + b\) và \(y =  – ax – b\) rồi xóa đi hai phần đường thẳng ở phía dưới trục hoành.

2. Một số dạng toán thường gặp

Dạng 1: Xét tính đơn điệu của hàm số

Phương pháp:

Sử dụng tính chất đơn điệu của hàm số bậc nhất.

Dạng 2: Tìm điều kiện tham số để đồ thị hàm số đi qua điểm cho trước.

Phương pháp:

Điểm \(M\left( {{x_0};{y_0}} \right)\) thuộc đồ thị hàm số nếu tọa độ của nó thỏa mãn phương trình hàm số.

Dạng 3: Vẽ đồ thị hàm số  \(y = \left| {ax + b} \right|\)

Phương pháp:

– Viết lại phương trình hàm số dưới dạng khoảng \(y = \left\{ \begin{array}{l}ax + b{\text{      khi    }}ax + b \ge 0\\ – ax – b{\text{    khi    }}ax + b < 0\end{array} \right.\)

– Vẽ đồ thị hai hàm số này trên cùng một hệ trục tọa độ rồi xóa bỏ phần đồ thị phía dưới trục hoành đi.

Đồ thị hàm số \(y = \left| {ax + b} \right|\) luôn nhận đường thẳng \(x =  – \dfrac{b}{a}\) làm trục đối xứng.

 

Bài tập minh họa

Bài 1:

Tính a và b để đồ thị hàm số y=ax+b đi qua 2 điểm A(0;2) và B(1;3).

Hướng dẫn:

Thay tọa độ điểm A(0;2) vào hàm số y=ax+b ta được:

2 = a.0 + b ⇒ b = 2

Thay tọa độ điểm B(1;3) vào hàm số y=ax+b với b=2 ta được:

3 = a.1 + 2 ⇒ a = 1

vậy ta được a=1 và b=2

Bài 2:

Tính a và b để đồ thị hàm số y=ax+b đi qua điểm M(-1;3) và song song với đường thẳng y=-2x+5.

Hướng dẫn:

Vì đồ thị hàm số y=ax+b song song với đường thẳng y=-2x+5 ⇒ a=-2

Thay tọa độ điểm M(-1;3) vào hàm số y=ax+b với a=-2 ta được:

3 = (-1)(-2)+b ⇒ b=1

Vậy ta được a=-2 và b=1.

Bài liên quan:

  1. Ôn tập chương 2 – Đại số 10
  2. Bài 3. Hàm số bậc hai – Chương 2 – Đại số 10
  3. Bài 1. Hàm số – Chương 2 – Đại số 10

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • CHUYÊN ĐỀ TOÁN 10 CHÂN TRỜI SÁNG TẠO ĐẦY ĐỦ FILE WORD 2023
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Chân trời – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Kết nối – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Cánh diều – 2022
  • Học toán lớp 10
  • Chuyên đề Toán 10 (CTST) – HK1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.