• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 12 - Cánh diều / Giải SGK Toán 12 Bài 1 (Cánh diều): Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm

Giải SGK Toán 12 Bài 1 (Cánh diều): Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm

Ngày 16/07/2024 Thuộc chủ đề:Giải bài tập Toán 12 - Cánh diều Tag với:GIẢI TOÁN 12 CÁNH DIỀU CHƯƠNG 3

Giải chi tiết Giải SGK Toán 12 Bài 1 (Cánh diều): Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm – SÁCH GIÁO KHOA TOÁN 12 CÁNH DIỀU – 2024

================

Giải bài tập Toán 12 Bài 1: Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm

Câu hỏi khởi động trang 84 Toán 12 Tập 1: Bảng 1 là bảng tần số ghép nhóm biểu diễn mẫu số liệu ghi lại năng suất lúa (đơn vị: tạ/ha) của 60 địa phương.

Câu hỏi khởi động trang 84 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Khoảng biến thiên của mẫu số liệu ghép nhóm được xác định như thế nào?

Lời giải:

Sau bài học này, ta sẽ giải quyết được bài toán trên như sau:

Trong mẫu số liệu ghép nhóm ở Bảng 1, ta có: đầu mút trái của nhóm 1 là a1 = 40, đầu mút phải của nhóm 5 là a6 = 75.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a6 – a1 = 75 – 40 = 35.

Hoạt động 1 trang 84 Toán 12 Tập 1: Xét mẫu số liệu ghép nhóm cho bởi Bảng 2.

Hoạt động 1 trang 84 Toán 12 Cánh diều Tập 1 | Giải Toán 12

a) Tìm a1, a6 lần lượt là đầu mút trái của nhóm 1, đầu mút phải của nhóm 5.

b) Tính hiệu R = a6 – a1.

Lời giải:

a) Đầu mút trái của nhóm 1 là a1 = 40.

Đầu mút phải của nhóm 5 là a6 = 65.

b) Ta có R = a6 – a1 = 65 – 40 = 25.

Hoạt động 2 trang 86 Toán 12 Tập 1: Xét mẫu số liệu ghép nhóm cho bởi Bảng 5.

Hoạt động 2 trang 86 Toán 12 Cánh diều Tập 1 | Giải Toán 12

a)

– Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng n4=364=9 có đúng không?

– Tìm đầu mút trái s, độ dài h, tần số n2 của nhóm 2; tần số tích lũy cf1 của nhóm 1. Sau đó, hãy tính tứ phân vị thứ nhất Q1­ của mẫu số liệu đã cho theo công thức sau:

Q1=s+9−cf1n2⋅h.

b)

– Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng n2=362=18 có đúng không?

– Tìm đầu mút trái r, độ dài d, tần số n3 của nhóm 3; tần số tích lũy cf2 của nhóm 2. Sau đó, hãy tính tứ phân vị thứ hai Q2 của mẫu số liệu đã cho theo công thức sau:

Q2=r+18−cf2n3⋅d.

c)

– Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3n4=3⋅364=27 có đúng không?

– Tìm đầu mút trái t, độ dài l, tần số n4 của nhóm 4; tần số tích lũy cf3 của nhóm 3. Sau đó, hãy tính tứ phân vị thứ hai Q3 của mẫu số liệu đã cho theo công thức sau:

Q2=t+27−cf3n4⋅l.

d) Tìm hiệu Q3 – Q1.

Lời giải:

a) – Tần số tích lũy của nhóm 1 là 6 < 9, tần số tích lũy của nhóm 2 là 17 > 9.

Vậy nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng n4=364=9.

– Nhóm 2 có đầu mút trái s = 163, độ dài h = 163 – 160 = 3, tần số n2 = 11; tần số tích lũy của nhóm 1 là cf1 = 6.

Tứ phân vị thứ nhất Q1 của mẫu số liệu đã cho là

Q1=s+9−cf1n2⋅h=163+9−611⋅3=180211≈163,82.

b) – Tần số tích lũy của nhóm 1 là 6 < 18, tần số tích lũy của nhóm 2 là 17 < 18, tần số tích lũy của nhóm 3 là 26 > 18.

Vậy nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng n2=362=18.

– Nhóm 3 có đầu mút trái r = 166, độ dài d = 169 – 166 = 3, tần số n3 = 9; tần số tích lũy của nhóm 2 là cf2 = 17.

Tứ phân vị thứ hai Q2 của mẫu số liệu đã cho là

Q2=r+18−cf2n3⋅d=166+18−179⋅3=4993≈166,33.

c) – Tần số tích lũy của nhóm 1 là 6 < 27, tần số tích lũy của nhóm 2 là 17 < 27, tần số tích lũy của nhóm 3 là 26 < 27, tần số tích lũy của nhóm 4 là 33 > 27.

Vậy nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 3n4=3⋅364=27.

– Nhóm 4 có đầu mút trái t = 169, độ dài l = 172 – 169 = 3, tần số n4 = 7; tần số tích lũy của nhóm 3 là cf3 = 26.

Tứ phân vị thứ ba Q3 của mẫu số liệu đã cho là

Q3=t+27−cf3n4⋅l=169+27−267⋅3=11867≈169,43.

d) Ta có Q3 – Q1 = 11867−180211=43277 ≈ 5,61.

Luyện tập 2 trang 87 Toán 12 Tập 1: Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm được cho bởi Bảng 1 trong phần mở đầu.

Luyện tập 2 trang 87 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Lời giải:

Từ Bảng 1 ta có bảng sau:

Luyện tập 2 trang 87 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 60.

– Ta có: n4=604=15 mà 7 < 15 < 28. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm [54; 61) có s = 54; h = 7; n3 = 21 và nhóm 2 là nhóm [47; 54) có cf2 = 7.

Áp dụng công thức, ta có tứ phân vị thứ nhất là

Q1=54+15−721⋅7=1703 (tạ/ha).

– Ta có: 3n4=3⋅604=45 mà 28 < 45 < 49. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45. Xét nhóm 4 là nhóm [61; 68) có t = 61; l = 7; n4 = 21 và nhóm 3 là nhóm [54; 61) có cf3 = 28.

Áp dụng công thức, ta có tứ phân vị thứ ba là

Q3=61+45−2821⋅7=2003 (tạ/ha).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

∆Q = Q3 – Q1 = 2003−1703 = 10 (tạ/ha).

Bài tập

Bài 1 trang 88 Toán 12 Tập 1: Bảng 8 biểu diễn mẫu số liệu ghép nhóm về số tiền (đơn vị: nghìn đồng) mà 60 khách hàng mua sách ở một cửa hàng trong một ngày.

Bài 1 trang 88 Toán 12 Cánh diều Tập 1 | Giải Toán 12

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là:

A. 50.

B. 30.

C. 6.

D. 69,8.

b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là:

A. 50.

B. 40.

C. 14,23.

D. 70,87.

Lời giải:

a) Đáp án đúng là: A

Trong mẫu số liệu ghép nhóm ở Bảng 8, ta có: đầu mút trái của nhóm 1 là a1 = 40, đầu mút phải của nhóm 5 là a6 = 90.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a6 – a1 = 90 – 40 = 50 (nghìn đồng).

b) Đáp án đúng là: C

Từ Bảng 8 ta có bảng sau:

Bài 1 trang 88 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 60.

– Ta có: n4=604=15 mà 9 < 15 < 28. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 3 là nhóm [60; 70) có s = 60; h = 10; n3 = 19 và nhóm 2 là nhóm [50; 60) có cf2 = 9.

Áp dụng công thức, ta có tứ phân vị thứ nhất là

Q1=60+15−919⋅10=120019 (nghìn đồng).

– Ta có: 3n4=3⋅604=45 mà 28 < 45 < 51. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45. Xét nhóm 4 là nhóm [70; 80) có t = 70; l = 10; n4 = 23 và nhóm 3 là nhóm [60; 70) có cf3 = 28.

Áp dụng công thức, ta có tứ phân vị thứ ba là

Q3=70+45−2823⋅10=178023(nghìn đồng).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

∆Q = Q3 – Q1 = 178023−120019 ≈ 14,23 (nghìn đồng).

Bài 2 trang 88 Toán 12 Tập 1: Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của một công ty (đơn vị: triệu đồng).

a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.

Bài 2 trang 88 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Lời giải:

a) Trong mẫu số liệu ghép nhóm ở Bảng 9, ta có: đầu mút trái của nhóm 1 là a1 = 10, đầu mút phải của nhóm 6 là a7 = 40.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a7 – a1 = 40 – 10 = 30 (triệu đồng).

b) Từ Bảng 9 ta có bảng sau:

Bài 2 trang 88 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 60.

– Ta có: n4=604=15. Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 1 là nhóm [10; 15) có s = 10; h = 5; n1 = 15.

Áp dụng công thức, ta có tứ phân vị thứ nhất là

Q1=10+1515⋅5=15 (triệu đồng).

– Ta có: 3n4=3⋅604=45 mà 43 < 45 < 53. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45. Xét nhóm 4 là nhóm [25; 30) có t = 25; l = 5; n4 = 10 và nhóm 3 là nhóm [20; 25) có cf3 = 43.

Áp dụng công thức, ta có tứ phân vị thứ ba là

Q3=25+45−4310⋅5=26 (triệu đồng).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

∆Q = Q3 – Q1 = 26 – 15 = 11 (triệu đồng).

Bài 3 trang 88 Toán 12 Tập 1: Bảng 10 biểu diễn mẫu số liệu ghép nhóm về độ tuổi của cư dân trong một khu phố.

a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.

b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.

Bài 3 trang 88 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Lời giải:

a) Trong mẫu số liệu ghép nhóm ở Bảng 10, ta có: đầu mút trái của nhóm 1 là a1 = 20, đầu mút phải của nhóm 6 là a7 = 80.

Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:

R = a7 – a1 = 80 – 20 = 60.

b) Từ Bảng 10 ta có bảng sau:

Bài 3 trang 88 Toán 12 Cánh diều Tập 1 | Giải Toán 12

Số phần tử của mẫu là n = 100.

– Ta có: n4=1004=25. Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 25. Xét nhóm 1 là nhóm [20; 30) có s = 20; h = 10; n1 = 25.

Áp dụng công thức, ta có tứ phân vị thứ nhất là

Q1=20+2525⋅10=30.

– Ta có: 3n4=3⋅1004=75 mà 65 < 75 < 80. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75. Xét nhóm 4 là nhóm [50; 60) có t = 50; l = 10; n4 = 15 và nhóm 3 là nhóm [40; 50) có cf3 = 65.

Áp dụng công thức, ta có tứ phân vị thứ ba là

Q3=50+75−6515⋅10=1703.

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

∆Q = Q3 – Q1 = 1703−30=803 ≈ 26,67.

=============
THUỘC: Giải bài tập Toán 12 – SGK CÁNH DIỀU

Bài liên quan:

  1. Giải SGK Toán 12 (Cánh diều): Bài tập cuối chương 3 trang 93
  2. Giải SGK Toán 12 Bài 2 (Cánh diều): Phương sai, độ lệch chuẩn của mẫu số liệu ghép nhóm

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải bài tập Toán 12 – SÁCH CÁNH DIỀU – Tập 1, Tập 2

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.