• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Sách bài tập Toán 11 - Cánh diều / Giải Sách bài tập Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit

Giải Sách bài tập Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit

Ngày 09/01/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Cánh diều Tag với:GIAI SBT CHUONG 6 TOAN 11 CD

Giải Sách bài tập Toán 11 Bài 2 (Cánh diều): Phép tính lôgarit – SÁCH GIÁO KHOA SGK Cánh diều 2024

================

Giải SBT Toán 11 Bài 2: Phép tính lôgarit

Giải SBT Toán 11 trang 37

Bài 17 trang 37 SBT Toán 11 Tập 2: Cho a > 0, a ≠ 2. Giá trị của loga2a24 bằng:

A. 12

B. 2;

C. −12;

D. – 2.

Lời giải:

Đáp án đúng là: B

Với a > 0, a ≠ 2 ta có: loga2a24=loga2a222=loga2a22=2.

Bài 18 trang 37 SBT Toán 11 Tập 2: Cho a > 0, a ≠ 1. Giá trị của logaaa bằng:

A. 43

B. 32

C. 34

D. 18

Lời giải:

Đáp án đúng là: C

Với a > 0, a ≠ 1 ta có:

logaaa=logaa.a1212=logaa3212=logaa32.12=logaa34=34.

Bài 19 trang 37 SBT Toán 11 Tập 2: Cho a > 0. Giá trị của log28a bằng:

A. 3 – log2 a;

B. 4 – log2 a;

C. 1log2a;

D. 8 – log2 a.

Lời giải:

Đáp án đúng là: A

Với a > 0 ta có:

log28a=log28−log2a=log223−log2a

= 3log22 – log2 a = 3 – log2 a.

Bài 20 trang 37 SBT Toán 11 Tập 2: Nếu logab = 2, logac = 3, thì loga(b2c3) bằng:

A. 108;

B. 13;

C. 31;

D. 36.

Lời giải:

Đáp án đúng là: B

Với a > 0, b > 0, c > 0, a ≠ 1 ta có:

loga(b2c3) = logab2 + logac3 = 2logab + 3logac = 2.2 + 3.3 = 13.

Giải SBT Toán 11 trang 38

Bài 21 trang 38 SBT Toán 11 Tập 2: Cho a > 0. Giá trị của ln(9a) – ln(3a) bằng:

A. ln(6a);

B. ln6;

C. ln9ln3;

D. ln3.

Lời giải:

Đáp án đúng là: D

Với a > 0 ta có:

ln(9a) – ln(3a) = ln(3.3a) – ln(3a)

= ln3 + ln(3a) – ln(3a) = ln3.

Bài 22 trang 38 SBT Toán 11 Tập 2: Cho a > 0, b > 0. Mệnh đề đúng là:

Cho a > 0, b > 0. Mệnh đề đúng là

Lời giải:

Đáp án đúng là: A

Với a > 0, b > 0 ta có:

log22a3b=log22a3−log2b

= log22 + log2a3 – log2b = 1 + 3log2a – log2b.

Bài 23 trang 38 SBT Toán 11 Tập 2: Cho a > 0, a ≠ 1 và b > 0. Mệnh đề đúng là:

Cho a > 0, a ≠ 1 và b > 0. Mệnh đề đúng là

Lời giải:

Đáp án đúng là: D

Với a > 0, a ≠ 1 và b > 0 ta có:

loga2ab=12logaab=12logaa+logab

=121+logab=12+12logab.

Bài 24 trang 38 SBT Toán 11 Tập 2: Nếu log23 = a thì log69 bằng:

Bài 24 trang 38 SBT Toán 11 Tập 2

Lời giải:

Đáp án đúng là: D

Nếu log23 = a thì log69=log29log26=log232log23+log22

=2log23log23+1=2aa+1.

Bài 25 trang 38 SBT Toán 11 Tập 2: Nếu logab = 5 thì loga2bab2 bằng:

A. 117

B. 1;

C. 4;

D. 267

Lời giải:

Đáp án đúng là: A

Với a > 0, b > 0, a ≠ 1 và logab = 5 thì

loga2bab2=logaab2logaa2b=logaa+logab2logaa2+logab

=1+2logab2+logab=1+2⋅52+5=117.

Bài 26 trang 38 SBT Toán 11 Tập 2: Cho a > 0, b > 0 thỏa mãn a2 + b2 = 7ab. Khi đó, log(a+b) bằng:

Cho a > 0, b > 0 thỏa mãn a^2 + b^2 = 7ab

Lời giải:

Đáp án đúng là: D

Với a > 0, b > 0 ta có:

a2 + b2 = 7ab hay a2 + 2ab + b2 = 9ab ⇒ (a + b)2 = 9ab.

⇒a+b=9ab⇒a+b=3ab12 (Vì a > 0, b > 0).

Xét: loga+b=log3ab12

=log3+logab12

=log3+12loga+logb.

Bài 27 trang 38 SBT Toán 11 Tập 2: Không sử dụng máy tính cầm tay, hãy tính:

Không sử dụng máy tính cầm tay, hãy tính

Lời giải:

Không sử dụng máy tính cầm tay, hãy tính

Không sử dụng máy tính cầm tay, hãy tính

Bài 28 trang 38 SBT Toán 11 Tập 2: Tính:

Bài 28 trang 38 SBT Toán 11 Tập 2

Lời giải:

Bài 28 trang 38 SBT Toán 11 Tập 2

Bài 28 trang 38 SBT Toán 11 Tập 2

Bài 28 trang 38 SBT Toán 11 Tập 2

Giải SBT Toán 11 trang 39

Bài 29 trang 39 SBT Toán 11 Tập 2: Cho logab = 4. Tính:

Bài 29 trang 39 SBT Toán 11 Tập 2

Lời giải:

Bài 29 trang 39 SBT Toán 11 Tập 2

Bài 29 trang 39 SBT Toán 11 Tập 2

Bài 29 trang 39 SBT Toán 11 Tập 2

Bài 30 trang 39 SBT Toán 11 Tập 2: a) Cho log23 = a. Tính log1872 theo a

b*) Cho log2 = a. Tính log2050 theo a.

Lời giải:

a) log1872=log272log218=log223.32log22.32

=log223+log232log22+log232=3+2log231+2log23=3+2a1+2a.

b*) Ta có: 1 = log10 = log(2.5) = log2 + log5 nên log5 = 1 – log2 = 1 – a.

Xét: log2050=log50log20=log10.5log10.2

=log10+log5log10+log2=1+1−a1+a=2−a1+a.

Bài 31 trang 39 SBT Toán 11 Tập 2: Cho x > 0, y > 0 thoả mãn: x2 + 4y2 = 6xy. Chứng minh rằng:

2log(x + 2y) = 1 + logx + logy.

Lời giải:

Với x > 0, y > 0 ta có:

x2 + 4y2 = 6xy ⇒ x2 + 4xy + 4y2 = 10xy

⇒ (x + 2y)2 = 10xy.

Suy ra: 2log(x + 2y) = log(x + 2y)2

= log(10xy) = log10 + logx + logy

= 1 + logx + logy.

Vậy 2log(x + 2y) = 1 + logx + logy.

Bài 32 trang 39 SBT Toán 11 Tập 2: Cho a, b, c, x, y, z là các số thực dương khác 1 và logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng. Chứng minh rằng:

logby=2logax⋅logczlogax+logcz.

Lời giải:

Do logxa, logyb, logzc theo thứ tự lập thành một cấp số cộng nên ta có:

Cho a, b, c, x, y, z là các số thực dương khác 1

Bài 33 trang 39 SBT Toán 11 Tập 2: Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ C614 có trong mẫu vật tại thời điểm t (năm) (so với thời điểm ban đầu t = 0), sau đó sử dụng công thức tính độ phóng xạ H=H0e−λt (đơn vị là Becquerel, kí hiệu Bq) với H0 là độ phóng xa ban đầu (tại thời điểm t = 0); λ=ln2T là hằng số phóng xạ, T = 5 730 (năm) (Nguồn: Vật lí 12 Nâng cao, NXBGD Việt Nam, 2014). Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ là 0,215 Bq. Biết độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq. Xác định độ tuổi của mẫu gỗ cổ đó (làm tròn kết quả đến hàng đơn vị).

Lời giải:

Chất phóng xạ có chu kì bán rã là T = 5 730 (năm).

Suy ra: λ=ln25  730.

Gọi t là độ tuổi của mẫu gỗ cổ.

Vì độ phóng xạ của mẫu gỗ tươi cùng loại là 0,250 Bq nên ta có H0 = 0,250 Bq.

Khi khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xa là 0,215 Bq, suy ra ta có H = 0,215 Bq.

Ta có:

Để tính độ tuổi của mẫu vật bằng gỗ, người ta đo độ phóng xạ

Vậy độ tuổi của mẫu gỗ cổ đó xấp xỉ 1 247 năm.

Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài 1: Phép tính lũy thừa với số mũ thực

Bài 2: Phép tính lôgarit

Bài 3: Hàm số mũ. Hàm số lôgarit

Bài 4: Phương trình, bất phương trình mũ và lôgarit

Bài tập cuối chương 6

Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm

=============
THUỘC: Giải SÁCH bài tập Toán 11 – SGK Cánh diều

Bài liên quan:

  1. Giải Sách bài tập Toán 11 (Cánh diều) Bài tập cuối chương 6
  2. Giải Sách bài tập Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit
  3. Giải Sách bài tập Toán 11 Bài 3 (Cánh diều): Hàm số mũ. Hàm số lôgarit
  4. Giải Sách bài tập Toán 11 Bài 1 (Cánh diều): Phép tính lũy thừa với số mũ thực

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SÁCH bài tập Toán 11 – CÁNH DIỀU

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.