• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải Sách bài tập Toán 11 - Kết nối / Giải Sách bài tập Toán 11 Bài 22 (KNTT): Hai đường thẳng vuông góc

Giải Sách bài tập Toán 11 Bài 22 (KNTT): Hai đường thẳng vuông góc

Ngày 02/01/2024 Thuộc chủ đề:Giải Sách bài tập Toán 11 - Kết nối Tag với:GIAI SBT CHUONG 7 TOAN 11 KN

Giải Sách bài tập Toán 11 Bài 22 (KNTT): Hai đường thẳng vuông góc – SÁCH GIÁO KHOA KẾT NỐI TRI THỨC 2024

================

Giải SBT Toán lớp 11 Bài 22: Hai đường thẳng vuông góc

Giải SBT Toán 11 trang 25

Bài 7.1 trang 25 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, tam giác SAD là tam giác đều và M là trung điểm của cạnh AD. Tính góc giữa hai đường thẳng BC và SA; BC và SM.

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành

Vì ABCD là hình bình hành nên BC // AD. Do đó (BC, SA) = (AD, SA) = SAD^.

Do tam giác SAD đều nên SAD^ = 60o .

Vậy góc giữa hai đường thẳng BC và SA bằng 60°.

Vì ABCD là hình bình hành nên BC // AD. Do đó (BC, SM) = (AD, SM).

Vì M là trung điểm của AD nên SM là đường trung tuyến.

Xét tam giác đều SAD có SM là đường trung tuyến nên SM là đường cao.

Do đó SM ⊥ AD hay (AD, SM) = 90°.

Vậy góc giữa hai đường thẳng BC và SM bằng 90°.

Giải SBT Toán 11 trang 26

Bài 7.2 trang 26 SBT Toán 11 Tập 2: Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau và góc A’AD bằng 120°. Tính góc giữa các cặp đường thẳng sau: A’C’ và BD; AD và BB’; A’D và BB’.

Lời giải:

Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh bằng nhau

Vì hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau nên ABCD là hình thoi, suy ra AC ⊥ BD.

Mà A’C’ // AC nên (A’C’, BD) = (AC, BD) = 90°.

Vậy góc giữa hai đường thẳng A’C’ và BD bằng 90°.

Vì BB’ // AA’ nên (AD, BB’) = (AD, AA’) = 180o – A‘AD^ = 180o – 120o = 60o.

Vậy góc giữa hai đường thẳng AD và BB’ bằng 60°.

Vì BB’ // AA’ nên (A’D, BB’) = (A’D, AA’) = A‘AD^ .

Vì hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng nhau nên ADD’A’ là hình thoi, suy ra A’D là đường phân giác của góc AA’D’.

Xét hình thoi ADD’A’ có A‘AD^ = 120o nên AA‘D‘^ = 180o – 120o = 60o.

Mà A’D là đường phân giác của góc AA’D’ nên A‘AD^ = 60o2 = 30o.

Vậy góc giữa hai đường thẳng A’D và BB’ bằng 30°.

Bài 7.3 trang 26 SBT Toán 11 Tập 2: Cho tứ diện ABCD, gọi M là N lần lượt là trung điểm của AC và BD. Biết MN = a3; AB = 22a và CD = 2a. Chứng minh rằng đường thẳng AB vuông góc với đường thẳng CD.

Lời giải:

Cho tứ diện ABCD, gọi M là N lần lượt là trung điểm của AC và BD

Lấy K là trung điểm của BC.

Xét tam giác BCD có N là trung điểm BD, K là trung điểm BC nên NK là đường trung bình. Do đó NK // CD và NK = DC2 = a.

Xét tam giác ABC có M là trung điểm AC, K là trung điểm BC nên MK là đường trung bình. Do đó MK // AB và MK = AB2 = 2a.

Có MN2 = 3a2 ; NK2 + MK2 = a2 + 2a2 = 3a2.

Do đó MN2 = NK2 + MK2 nên tam giác MNK là tam giác vuông tại K hay NK ⊥ MK.

Lại có MK // AB, NK // CD nên (AB, CD) = (MK, NK) = 90° hay AB ⊥ CD.

Bài 7.4 trang 26 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình vuông tâm O và tất cả các cạnh của hình chóp đều bằng a. Gọi M, N lần lượt là trung điểm của cạnh SA, AB.

a) Tính góc giữa các cặp đường thẳng sau: MN và SD; MO và SB.

b) Tính tang của góc giữa hai đường thẳng SN và BC.

Lời giải:

Cho hình chóp S.ABCD có đáy là hình vuông tâm O

a) Hình chóp S.ABCD có tất cả các cạnh bằng a và đáy ABCD là hình vuông nên

SA = SB = SC = SD = AB = BC = CD = DA = a.

Xét tam giác ADB vuông tại A, có BD2 = AD2 + AB2 = a2 + a2 = 2a2.

Mà SB2 + SD2 = a2 + a2 = 2a2. Do đó SB2 + SD2 = BD2 nên tam giác SBD vuông tại S.

Vì M, N lần lượt là trung điểm của cạnh SA, AB nên MN là đường trung bình của tam giác SAB, do đó MN // SB.

Khi đó (MN, SD) = (SB, SD) = 90°.

Vì O là giao điểm của AC và BD, ABCD là hình vuông nên O là trung điểm AC, BD.

Xét tam giác SAC có M là trung điểm SA, O là trung điểm AC nên MO là đường trung bình, suy ra MO // SC.

Khi đó (MO, SB) = (SC, SB) = BSC^ = 60o (do tam giác SBC là tam giác đều).

b) Xét tam giác ABC có O là trung điểm AC, N là trung điểm AB nên ON là đường trung bình, suy ra ON // BC.

Vì ON // BC nên (SN, BC) = (SN, ON) = SNO^ .

Vì tam giác SAC có SA = SC = a nên tam giác SAC cân tại S mà SO là trung tuyến nên SO là đường cao.

Vì BD2 = 2a2 và ABCD là hình vuông nên AC = BD = a2 ⇒ AO = OC = a22 .

Xét tam giác SOC vuông tại O, có:

SC2 = SO2 + OC2 ⇔a2 = SO2 + a222⇔SO = a22.

Vì ON là đường trung bình của tam giác ABC nên ON = BC2=a2.

Xét tam giác đều SAB có SN là trung tuyến đồng thời là đường cao hay SN ⊥ AB.

Xét tam giác vuông SNB vuông tại N, ta có:

SN2 + NB2 = SB2 ⇔ SN2 + a22 = a2 ⇔ SN2 = 3a24

Lại có SO2 + ON2 = a222+ a22 = 3a24 . Do đó tam giác SON vuông tại O.

Xét tam giác vuông SON vuông tại O có tanSNO^ = SOON = 2.

Vậy tang của góc giữa hai đường thẳng SN và BC là 2 .

Bài 7.5 trang 26 SBT Toán 11 Tập 2: Một chiếc thang có dạng hình thang cân cao 6 m, hai chân thang cách nhau 80 cm, hai ngọn thang cách nhau 60 cm. Thang được dựa vào bờ tường như hình bên. Tính góc tạo giữa đường thẳng chân tường và cạnh cột thang (tính gần đúng theo đơn vị độ, làm tròn kết quả đến chữ số thập phân thứ hai).

Một chiếc thang có dạng hình thang cân cao 6m

Lời giải:

Một chiếc thang có dạng hình thang cân cao 6m

Gọi A, B là hai điểm tại hai vị trí chân thang và C, D là hai điểm tại hai vị trí ngọn thang, EF là đường chân tường.

Ta có EF // AB nên (EF, AC) = (AB, AC) = BAC^ .

Kẻ CH ⊥ AB tại H, DK ⊥ AB tại K.

Ta có CDKH là hình chữ nhật nên CH = DK, CD = HK.

Xét ∆CHA và ∆DKB có

CA = DB, CHA^=DKB^ = 90o , CH = DK nên ∆CHA = ∆DKB (c – g – c).

Suy ra AH = KB.

Khi đó AH = AB–CD2 = 10 (cm) = 0,1 (m).

Vì tam giác ACH vuông tại H nên cosCAH^=AHAC=0,16=160⇒CAH^≈ 89,05o.

Do đó, BAC^≈ 89,05o.

Vậy góc tạo giữa đường thẳng chân tường và cạnh cột thang khoảng 89,05°.

=============
THUỘC: Giải SÁCH bài tập Toán 11 – KNTT

Bài liên quan:

  1. Giải Sách bài tập Toán 11 (Kết nối tri thức) Bài tập cuối chương 7 trang 41
  2. Giải Sách bài tập Toán 11 Bài 27 (KNTT): Thể tích
  3. Giải Sách bài tập Toán 11 Bài 26 (KNTT): Khoảng cách
  4. Giải Sách bài tập Toán 11 Bài 25 (KNTT): Hai mặt phẳng vuông góc
  5. Giải Sách bài tập Toán 11 Bài 24 (KNTT): Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
  6. Giải Sách bài tập Toán 11 Bài 23 (KNTT): Đường thẳng vuông góc với mặt phẳng

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải SÁCH bài tập Toán 11 – KẾT NỐI

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.