Giải SGK Toán 11 Bài 1: Đạo hàm – CTST – SÁCH GIÁO KHOA CHÂN TRỜI SÁNG TẠO 2023
================
Giải bài tập Toán lớp 11 Bài 1: Đạo hàm
Hoạt động khởi động trang 36 Toán 11 Tập 2: Đạo hàm là một khái niệm quan trọng của Giải tích. Đạo hàm cho biết “tốc độ thay đổi” của hàm số theo biến số. Trong chương này, chúng ta sẽ tìm hiểu về đạo hàm, ý nghĩa hình học của đạo hàm, các quy tắc tính đạo hàm. Chúng ta cũng tìm hiểu về đạo hàm cấp hai và giải quyết một số vấn đề thực tiễn gắn với đạo hàm.
Một vật được thả từ trực thăng. Làm thế nào để biết được vận tốc rơi của vật tại một thời điểm bất kì?
Lời giải:
Để biết được vận tốc rơi của vật tại một thời điểm bất kì thì ta xác định hàm số biểu diễn độ cao của vật đó khi được thả từ chiếc trực thăng. Sau đó ta tính đạo hàm hàm số vừa tìm được.
Hoạt động khởi động trang 37 Toán 11 Tập 2: Giữa tốc độ của xe và quãng đường mà xe đi được có mối liên hệ như thế nào? Nếu biết quãng đường s(t) tại mọi điểm t thì có thể tính được tốc độ của xe tại mỗi thời điểm không?
Lời giải:
Sau khi học xong bài này, ta giải quyết được:
Tốc độ của xe cho biết tốc độ thay đổi của quãng đường của xe đi được theo thời gian. Nếu biết quãng đường tại mọi thời điểm thì có thể tính được tốc độ của xe tại mọi thời điểm (dựa vào phép tính đạo hàm).
1. Đạo hàm
Hoạt động khám phá 1 trang 37 Toán 11 Tập 2: Quãng đường rơi tự do của một vật được biểu diễn bởi công thức s(t) = 4,9t2 với t là thời gian tính bằng giây và s tính bằng mét.
Vận tốc trung bình của chuyển động này trên khoảng thời gian [5; t] hoặc [t; 5] được tính bằng công thức .
a) Hoàn thiện bảng sau về vận tốc trung bình trong những khoảng thời gian khác nhau. Nêu nhận xét về khi t càng gần 5.
|
Khoảng thời gian |
[5; 6] |
[5; 5,1] |
[5; 5,05] |
[5; 5,01] |
[5; 5,001] |
[4,999; 5] |
[4,99; 5] |
|
53,9 |
? |
? |
? |
? |
? |
? |
b) Giới hạn được gọi là vận tốc tức thời của chuyển động tại thời điểm t0 = 5. Tính giá trị này.
c) Tính giới hạn để xác định vận tốc tức thời của chuyển động tại thời điềm t0 nào đó trong quá trình rơi của vật.
Lời giải:
a) • Với t ∈ [5; 5,1], chọn t = 5,1 ta có:
• Với t ∈ [5; 5,05], chọn t = 5,05 ta có:
.
• Với t ∈ [5; 5,01], chọn t = 5,01 ta có:
.
• Với t ∈ [5; 5,001], chọn t = 5,001 ta có:
.
• Với t ∈ [4,999; 5], chọn t = 4,999 ta có:
.
• Với t ∈ [4,99; 5], chọn t = 4,99 ta có:
.
Từ đó ta có bảng sau:
|
Khoảng thời gian |
[5; 6] |
[5; 5,1] |
[5; 5,05] |
[5; 5,01] |
[5; 5,001] |
[4,999; 5] |
[4,99; 5] |
|
53,9 |
49,49 |
49,245 |
49,049 |
49,0049 |
48,9951 |
48,951 |
Ta thấy càng gần 49 khi t càng gần 5.
b)
c)
Thực hành 1 trang 39 Toán 11 Tập 2: Tính đạo hàm của hàm số f(x) = x3.
Lời giải:
Với bất kì x0 ∈ ℝ, ta có:
.
Vậy trên ℝ.
Vận dụng trang 39 Toán 11 Tập 2: Với tình huống trong Hoạt động khám phá 1, hãy tính vận tốc tức thời của chuyển động lúc t = 2.
Lời giải:
Với bất kì t0 ∈ ℝ, ta có:
.
Do đó trên ℝ.
Vậy vận tốc tức thời của chuyển động lúc t = 2 là:
(m/s).
2. Ý nghĩa hình học của đạo hàm
Hoạt động khám phá 2 trang 39 Toán 11 Tập 2: Cho hàm số có đồ thị (C) và điểm thuộc (C).
a) Vẽ (C) và tính f’ (1).
b) Vẽ đường thẳng d đi qua điểm M và có hệ số góc bằng f’ (1). Nêu nhận xét về vị trí tương đối giữa d và (C).
Lời giải:
a) Đồ thị hàm số được vẽ như hình bên dưới.
Ta có
.
b) Theo đề bài, đường thẳng d đi qua và có hệ số góc bằng k = f’ (1) = 1 nên:
.
Lấy điểm , vẽ đường thẳng , ta có hình vẽ:
Nhận xét: Đường thẳng d cắt đồ thị hàm số (C) tại duy nhất tại điểm .
Khi đó, đường thẳng d tiếp xúc với đồ thị hàm số (C) tại điểm .
Thực hành 2 trang 40 Toán 11 Tập 2: Cho (C) là đồ thị của hàm số và điểm M(1; 1) ∈ (C). Tính hệ số góc của tiếp tuyến của (C) tại điểm M và viết phương trình tiếp tuyến đó.
Lời giải:
Ta có nên tiếp tuyến của (C) tại điểm M có hệ số góc .
Phương trình tiếp tuyến của (C) tại điểm M là:
y – 1 = (–1)(x – 1) ⇔ y – 1 = 1 – x ⇔ y = – x + 2.
Vậy hệ số góc của tiếp tuyến của (C) tại điểm M bằng –1 và phương trình tiếp tuyến là y = – x + 2.
3. Số e
Hoạt động khám phá 3 trang 40 Toán 11 Tập 2: Một người gửi tiết kiệm khoản tiền A triệu đồng (gọi là vốn) với lãi suất r/năm theo thể thức lãi kép (tiền lãi sau mỗi kì hạn được cộng gộp vào vốn). Tính tổng số tiền vốn và lãi sau một năm của người gửi nếu kì hạn là
a) một năm;
b) một tháng.
Lưu ý: Nếu một năm được chia thành n kì hạn (n ∈ ℕ*) thì lãi suất mỗi kì hạn là .
Lời giải:
a) Nếu người gửi với kì hạn một năm.
Số tiền lãi sau một năm là A.r.
Tổng số tiền vốn và lãi sau một năm của người gửi là:
A + Ar = A(1 + r).
b) Nếu người gửi với kì hạn một tháng.
Số tiền lãi sau tháng thứ nhất là: .
Tổng số tiền vốn và lãi sau tháng thứ nhất là:
.
Số tiền lãi sau tháng thứ hai là: .
Tổng số tiền vốn và lãi sau tháng thứ hai là:
Số tiền lãi sau tháng thứ ba là: .
Tổng số tiền vốn và lãi sau tháng thứ ba là:
…
Tương tự, tổng số tiền vốn và lãi sau 1 năm (tức là sau tháng thứ 12) là:
Vậy tổng số tiền vốn và lãi sau một năm là
Thực hành 3 trang 41 Toán 11 Tập 2: Một người gửi tiết kiệm khoản tiền 5 triệu đồng vào ngân hàng với lãi suất 4 THUỘC: Giải bài tập Toán 11 – Chân trời

Để lại một bình luận