• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Giải bài tập Toán 10 – Chân trời / Giải bài tập Bài 1: Không gian mẫu và biến cố (Chân trời)

Giải bài tập Bài 1: Không gian mẫu và biến cố (Chân trời)

Ngày 29/08/2022 Thuộc chủ đề:Giải bài tập Toán 10 – Chân trời Tag với:GBT Chuong 10 Toan 10 - CT

Giải bài tập Bài 1: Không gian mẫu và biến cố (Chân trời)
===========

Giải bài 1 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 100

a) Hãy mô tả không gian mẫu

b) Gọi A là biến cố “Số được chọn là số chính phương”. Hãy viết tập hợp mô tả biến cố A

c) Gọi B là biến cố “Số được chọn chia hết cho 4” Hãy tính số các kết quả thuận lợi cho B

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

Tâp hợp tất cả các kết quả có thể có của phép thử ngẫu nhiên được gọi là không gian mẫu, kí hiệu là \(\Omega \)

Lời giải chi tiết

a) Số nguyên dương nhỏ hơn 100 luôn có 1 hoặc 2 chữ số nên ta có không gian mẫu của phép thử trên là: \(\Omega  = \left\{ {1,2,3,4,5,…98,99} \right\}\)

b) Tập hợp biến cố A: “Số được chọn là số chính phương” là:

\(A = \left\{ {{a^2}\left| {a = 1,2,…,9} \right.} \right\}\)

c) Cứ 4 số thì có 1 số chia hết cho 4 nên số kết quả thuận lợi cho biến cố B là \(\frac{{100}}{4} = 25\)

Vậy có 25 kết quả thuận lợi cho biến cố B: “Số được chọn chia hết cho 4”


Giải bài 2 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Trong hộp có 3 tấm thẻ được đánh số từ 1 đến 3. Hãy xác định không gian mẫu của các phép thử:

a) Lấy một thẻ từ hộp, xem số, trả thẻ vào hộp rồi lại lấy tiếp 1 thẻ từ hộp

b) Lấy một thẻ từ hộp, xem số, bỏ ra ngoài rồi lấy tiếp 1 thẻ khác từ hộp

c) Lấy đồng thời hai thẻ từ hộp

Hướng dẫn giải chi tiết Bài 2

Phương pháp giải

Tâp hợp tất cả các kết quả có thể có của phép thử ngẫu nhiên được gọi là không gian mẫu, kí hiệu là \(\Omega \)

Lời giải chi tiết

a) Lần đầu tiên lấy thẻ, sau đó để lại vào hộp nên lần thứ 2 cũng sẽ có 3 trường hợp với 3 số xảy ra, nên ta có không gian mẫu của phép thử là:

\(\Omega  = \left\{ {\left( {i;j} \right)\left| {i,j = 1,2,3} \right.} \right\}\) với i, j lần lượt là số được đánh trên thẻ được lấy lần đầu và lần hai

b) Lần đầu lấy một thẻ từ hộp, xem số, bỏ ra ngoài rồi lấy tiếp 1 thẻ khác từ hộp, nên lần hai chỉ có 2 trường hợp với hai số còn lại, nên ta có không gian mẫu của phép thử là:

\(\Omega  = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)

(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)

c) Ta lấy đồng thời hai thẻ nên các số được đánh trên thẻ là khác nhau

\(\Omega  = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)

(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)


Giải bài 3 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Gieo hai con xúc xắc. Hãy tính số kết quả thuận lợi cho biến cố:

a) “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”

b) “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”

c) “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”

Hướng dẫn giải chi tiết Bài 3

Phương pháp giải

Cách 1: Sử dụng các quy tắc đếm, công thức tổ hợp để xác định

Cách 2: Viết tập hợp mô tả biến cố và xác định số phần tử của tập hợp

Lời giải chi tiết

a) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi A là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”. Tập hợp mô tả biến cố A là:

\(A = \left\{ {(1;4),(2;5),(3;6)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số chấm trên hai con xúc xắc)

b) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi B là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”. Tập hợp mô tả biến cố B là:

\(A = \left\{ {(1;5),(2;5),(3;5),(4;5),(6;5)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó i và j lần lượt là số chấm trên hai con xúc xắc)

c) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi C là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”. Tập hợp mô tả biến cố C là:

\(C = \left\{ {(a,b)\left| {a = 2,4,6;b = 1;3;5} \right.} \right\}\)(Với kết quả của phép thử là cặp số (a,b) trong đó a và b lần lượt là số chấm trên hai con xúc xắc)


Giải bài 4 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Xếp 4 viên bi xanh và 5 viên bi trắng có các kích thước khác nhau thành một hàng ngang một cách ngẫu nhiên. Hãy tính số các kết quả thuận lợi cho biến cố:

a) “Không có hai viên bi trắng nào xếp liền nhau”

b) “Bốn viên bi xanh được xếp liền nhau”

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải

a) Công đoạn 1: Xếp 4 viên bi xanh trước

Công đoạn 2: Xếp 5 viên bi trắng vào 5 vị trí xung quanh bi xanh, có quan tâm đến thứ tự

b) Công đoạn 1: Xếp 4 viên bi xanh liền nhau

Công đoạn 2: Xếp 5 viên bi trắng có kích thước khác nhau vào bên trái hay bên phải của bi xanh, có quan tâm đến thứ tự

Lời giải chi tiết

a) Việc xếp 9 viên bi sao cho không có hai viên bi trắng nào xếp liến nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh trước, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng vào 5 vị trí xung quanh bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5! = 60\) cách

Vậy có \(60.24 = 1440\) kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau”

b) Việc xếp 9 viên bi sao cho bốn viên bi xanh được xếp liền nhau được thực hiện qua 2 công đoạn

Công đoạn 1: Xếp 4 viên bi xanh liền nhau, vì các viên bi có kích thước khác nhau nên quan tâm đến thứ tự, suy ra công đoạn 1 có \(4! = 24\) cách

Công đoạn 2: Xếp 5 viên bi trắng có kích thước khác nhau vào bên trái hay bên phải của bi xanh, có quan tâm đến thứ tự nên công đoạn 2 có \(5!{.2^5} = 3840\) cách

Vậy có \(3840.24 = 92160\) kết quả thuận lợi cho biến cố “Không có hai viên bi trắng nào xếp liền nhau”

Bài liên quan:

  1. Giải bài tập Cuối chương 10 (Chân trời)
  2. Giải bài tập Bài 2: Xác suất của biến cố (Chân trời)

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải bài tập Toán lớp 10 – Sách Chân trời

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.