• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Đề thi toán tuyển sinh 10 / Đề thi môn Toán tuyển sinh vào lớp 10 – Số 9

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 9

Ngày 13/05/2019 Thuộc chủ đề:Đề thi toán tuyển sinh 10 Tag với:De thi toan tuyen sinh 10

Lưu bản nháp tự động

Đề thi môn Toán tuyển sinh vào lớp 10 – Số 9


I. TRẮC NGHIỆM (3 điểm)

Chọn phương án trả lời đúng trong các câu sau:

Câu 1.  Phương trình \({x^2} – 3x – 6 = 0\) có hai nghiệm \({x_1},\;\;{x_2}.\) Tổng \({x_1} + {x_2}\) bằng:

A.  3                                          B.  -3

C.  6                                          D.  -6

Câu 2.  Đường thẳng \(y = x + m – 2\) đi qua điểm \(E\left( {1;\;0} \right)\) khi:

A.  \(m =  – 1\)                           B.  \(m = 3\)

C.  \(m = 0\)                              D.  \(m = 1\)

Câu 3.  Cho tam giác \(ABC\) vuông tại \(A,\;\;\widehat {ACB} = {30^0},\;\;AB = 5cm.\) Độ dài cạnh \(AC\) là:

A.  \(10cm\)

B.  \(\dfrac{{5\sqrt 3 }}{2}cm\)

C.  \(5\sqrt 3 cm\)

D.  \(\dfrac{5}{{\sqrt 3 }}cm\)

Câu 4.  Hình vuông cạnh bằng 1, bán kính đường tròn ngoại tiếp hình vuông là:

A.  \(\dfrac{1}{2}\)

B.  \(1\)

C.  \(\sqrt 2 \)

D.  \(\dfrac{{\sqrt 2 }}{2}\)

Câu 5.  Phương trình \({x^2} + x + a = 0\) (với x là ẩn, a là tham số) có nghiệm kép khi:

A.  \(a =  – \dfrac{1}{4}\)

B.  \(a = \dfrac{1}{4}\)

C.  \(a = 4\)

D.  \( – 4\)

Câu 6.  Cho \(a > 0,\) rút gọn biểu thức \(\dfrac{{\sqrt {{a^3}} }}{{\sqrt a }}\) ta được kết quả:

A. \({a^2}\)

B.  \(a\)

C.  \( \pm a\)

D.  \( – a\)

PHẦN II. TỰ LUẬN (7 điểm)

Câu 7. (2,5 điểm)

a) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 5\\3x – y = 1\end{array} \right..\)

b) Tìm tọa độ giao điểm \(A,\;B\) của đồ thị hàm số \(y = {x^2}\) và \(y = x + 2.\) Gọi \(D,\;C\) lần lượt là hình chiếu vuông góc của \(A,\;B\) lên trục hoành. Tính diện tích tứ giác \(ABCD.\)

Câu 8. (1 điểm)

Nhân dịp Tết Thiếu nhi 01/06, một nhóm học sinh cần chia đều một số lượng quyển vở thành các phần quà để tặng cho các em nhỏ tại một mái ấm tình thương. Nếu mỗi phần quà giảm 2 quyển thì các em sẽ có thêm 2 phần quà nữa, còn nếu mỗi phần quà giảm 4 quyển thì các em sẽ có thêm 5 phần quà nữa. Hỏi ban đầu có bao nhiêu phần quà và mỗi phần quà có bao nhiêu quyển vở?

Câu 9 (2,5 điểm)

Cho đường tròn đường kính AB, các điểm C, D nằm trên đường tròn đó sao cho C, D nằm khác phía đối với đường thẳng AB, đồng thời AD > AC. Gọi điểm chính giữa của các cung nhỏ AC và AD lần lượt là M, N; giao điểm của MN với AC, AD lần lượt là H, I; giao điểm của MD và CN là K.

a) Chứng minh \(\widehat {ACN} = \widehat {DMN}\). Từ đó suy ra tứ giác MCKH nội tiếp.

b) Chứng minh KH song song với AD.

c) Tìm hệ thức liên hệ giữa sđ cung AC và sđ cung AD để AK song song với ND.

Câu 10. (1 điểm)

a) Cho các số thực dương a, b, c thỏa mãn điều kiện \(a + b + c = 3\). Tìm giá trị nhỏ nhất của biểu thức \(A = 4{a^2} + 6{b^2} + 3{c^2}\)

b) Tìm các số nguyên dương a, b biết các phương trình \({x^2} – 2ax – 3b = 0\) và \({x^2} – 2bx – 3a = 0\) (với x là ẩn) đều có nghiệm nguyên.

Lời giải chi tiết

I. TRẮC NGHIỆM (3 điểm)

1

2

3

4

5

A

D

C

D

B

6

 

B

Câu 1:

Ta có: \(a = 1;\;b =  – 3;\;c =  – 6.\)

Áp dụng hệ thức Vi-ét ta có: \({x_1} + {x_2} =  – \dfrac{b}{a} = 3.\)

Chọn A.

Câu 2:

Điểm \(E\left( {1;\;\;0} \right)\) thuộc đồ thị hàm số \(y = x + m – 2\)   nên ta có:

\(0 = 1 + m – 2 \Leftrightarrow m = 1.\)

Chọn D.

Câu 3:

Ta có: \(\tan C = \dfrac{{AB}}{{AC}} \)

\(\Rightarrow AC = \dfrac{{AB}}{{\tan C}} = \dfrac{5}{{\tan {{30}^0}}} = 5:\dfrac{1}{{\sqrt 3 }}\)\(\, = 5\sqrt 3 cm.\)

Chọn C.

Câu 4:

Xét hình vuông ABCD có các cạnh là 1.

Lưu bản nháp tự động

Tâm đường tròn ngoại tiếp hình vuông ABCD là giao điểm O của hai đường chéo AC và BD.

Áp dụng định lý Pi-ta-go cho tam giác ABC vuông tại B ta có:

\(A{C^2} = A{B^2} + B{C^2} = 1 + 1 = 2\) \( \Rightarrow AC = \sqrt 2 .\)

Có O là trung điểm của AC nên: \(OA = OC = R = \dfrac{{AC}}{2} = \dfrac{{\sqrt 2 }}{2}.\)

Chọn D.

Câu 5:

Phương trình đã cho có nghiệm kép \( \Leftrightarrow \Delta  = 0 \Leftrightarrow 1 – 4a = 0 \Leftrightarrow a = \dfrac{1}{4}.\)

Chọn B.

Câu 6:

Ta có: \(\dfrac{{\sqrt {{a^3}} }}{{\sqrt a }} = \sqrt {\dfrac{{{a^3}}}{a}}  = \sqrt {{a^2}}  = \left| a \right| = a\;\;\left( {do\;\;a > 0} \right).\)

Chọn B.

PHẦN II. TỰ LUẬN (7 điểm)

Câu 7. (2,5 điểm)

a) Giải hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 5\\3x – y = 1\end{array} \right..\)

\(\left\{ \begin{array}{l}x + 2y = 5\\3x – y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + 2y = 5\\6x – 2y = 2\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}7x = 7\\y = 3x – 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right..\)

Vậy hệ phương trình có nghiệm duy nhất: \(\left( {x;\;y} \right) = \left( {1;\;2} \right).\)

b) Tìm tọa độ giao điểm \(A,\;B\) của đồ thị hàm số \(y = {x^2}\) và \(y = x + 2.\) Gọi \(D,\;C\) lần lượt là hình chiếu vuông góc của \(A,\;B\) lên trục hoành.  Tính diện tích tứ giác \(ABCD.\)

Lưu bản nháp tự động

 

Phương trình hoành độ giao điểm của hai đồ thị hàm số là: \({x^2} = x + 2\)

\(\begin{array}{l} \Leftrightarrow {x^2} – x – 2 = 0\\ \Leftrightarrow \left( {x + 1} \right)\left( {x – 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x – 2 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x =  – 1 \Rightarrow A\left( { – 1;\;1} \right)\\x = 2 \Rightarrow B\left( {2;\;4} \right)\end{array} \right..\end{array}\)

C là hình chiếu của B trên trục hoành \( \Rightarrow C\left( {2;\;0} \right).\)

D là hình chiếu của A trên trục hoành \( \Rightarrow D\left( { – 1;\;0} \right).\)

Dựa vào đồ thị hàm số ta thấy ABCD là hình thang vuông tại D và C.

\(\begin{array}{l} \Rightarrow {S_{ABCD}} = \dfrac{{\left( {AD + CB} \right).CD}}{2} \\\;\;\;\;\;\;\;\;\;\;= \dfrac{{\left( {AD + CB} \right).\left( {DO + OC} \right)}}{2}\\\;\;\;\;\;\;\;\;\;\;= \dfrac{{\left( {1 + 4} \right)\left( {1 + 2} \right)}}{2} \\\;\;\;\;\;\;\;\;\;\;= \dfrac{{15}}{2} = 7,5\;\;\left( {dvdt} \right).\end{array}\)

Vậy diện tích tứ giác ABCD là: \(7,5\;dvdt.\)

Câu 8:

Nhân dịp Tết Thiếu nhi 01/06, một nhóm học sinh cần chia đều một số lượng quyển vở thành các phần quà để tặng cho các em nhỏ tại một mái ấm tình thương. Nếu mỗi phần quà giảm 2 quyển thì các em sẽ có thêm 2 phần quà nữa, còn nếu mỗi phần quà giảm 4 quyển thì các em sẽ có thêm 5 phần quà nữa. Hỏi ban đầu có bao nhiêu phần quà và mỗi phần quà có bao nhiêu quyển vở?

Gọi số phần quà ban đầu là \(x\) (phần) \(\left( {x \in N*} \right).\)

Gọi số quyển vở có trong mỗi phần quà là \(y\) (quyển vở) \(\left( {y \in N*} \right).\)

\( \Rightarrow \) Tổng số quyển vở của nhóm học sinh có là: \(xy\) (quyển).

Nếu mỗi phần quà giảm 2 quyển thì số có thêm 2 phần quà nữa nên ta có phương trình:

\(xy = \left( {x + 2} \right)\left( {y – 2} \right)\)

\(\Leftrightarrow 2y – 2x – 4 = 0 \)

\(\Leftrightarrow y – x = 2.\;\;\left( 1 \right)\)

Nếu mỗi phần quả giảm 4 quyển thì có thêm 5 phần quà nữa nên ta có phương trình:

\(xy = \left( {x + 5} \right)\left( {y – 4} \right) \)

\(\Leftrightarrow 5y – 4x – 20 = 0 \)

\(\Leftrightarrow 5y – 4x = 20\;\;\;\;\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}y – x = 2\\5y – 4x = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}5y – 5x = 10\\5y – 4x = 20\end{array} \right.\)

\(\Leftrightarrow \left\{ \begin{array}{l}x = 10\\y = x + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\;\;\left( {tm} \right)\\y = 12\;\;\;\left( {tm} \right)\end{array} \right..\)

Vậy ban đầu có 10 phần quà và mỗi phần quà có 12 quyển vở.

Câu 9 (2,5 điểm)

Cho đường tròn đường kính AB, các điểm C, D nằm trên đường tròn đó sao cho C, D nằm khác phía đối với đường thẳng AB, đồng thời AD > AC. Gọi điểm chính giữa của các cung nhỏ AC và AD lần lượt là M, N; giao điểm của MN với AC, AD lần lượt là H, I; giao điểm của MD và CN là K.

Lưu bản nháp tự động

a) Chứng minh \(\widehat {ACN} = \widehat {DMN}\). Từ đó suy ra tứ giác MCKH nội tiếp.

Ta có:

Góc ACN là góc nội tiếp chắn cung AN; góc DMN là góc nội tiếp chắn cung DN.

Mà cung AN = cung DN (gt)

\( \Rightarrow \widehat {ACN} = \widehat {DMN}\) (Các góc nội tiếp chắn các cung bằng nhau thì bằng nhau).

b) Chứng minh KH song song với AD.

Do đó tứ giác CMHK là tứ giác nội tiếp (Tứ giác có hai góc nội tiếp cùng chắn 1 cung bằng nhau).

\( \Rightarrow \widehat {CHK} = \widehat {CMK} = \widehat {CMD}\) (hai góc nội tiếp cùng chắn cung CK).

Mà \(\widehat {CMD} = \widehat {CAD}\) (hai góc nội tiếp cùng chắn cung CD của đường tròn (O))

\( \Rightarrow \widehat {CHK} = \widehat {CAD}\).

Mà hai góc này ở vị trí đồng vị \( \Rightarrow HK//AD\).

c) Tìm hệ thức liên hệ giữa sđ cung AC và sđ cung AD để AK song song với ND.

Chứng minh tương tự ta có \(AI//KH\)

\( \Rightarrow \) Tứ giác AHKI là hình bình hành (Tứ giác có các cạnh đối song song)

Ta có AK // DN \( \Rightarrow \widehat {IAK} = \widehat {ADN}\) (so le trong)

Lại có \(\widehat {ADN} = \widehat {DMN} = \widehat {AMN} \)

\(\Rightarrow \widehat {IAK} = \widehat {DMN} = \widehat {KMI} \)

\(\Rightarrow \) tứ giác AIKM là tứ giác nội tiếp (Tứ giác có hai góc nội tiếp cùng chắn 1 cung bằng nhau).

\( \Rightarrow \widehat {AMN} = \widehat {AKI}\) (hai góc nội tiếp cùng chắn cung AI)

\( \Rightarrow \widehat {IAK} = \widehat {AKI} \Rightarrow \Delta IAK\) cân tại I \( \Rightarrow IA = IK\)

\( \Rightarrow AHKI\) là hình thoi (Hình bình hành có hai cạnh kề bằng nhau).

\( \Rightarrow IH \bot AK\) (hai đường chéo của hình thoi).

\( \Rightarrow MN \bot AK\), mà \(AK//DN \Rightarrow AM \bot ND \Rightarrow \widehat {MND} = {90^0} \Rightarrow \) Góc MND nội tiếp chắn nửa đường tròn.

\( \Rightarrow MD\) là đường kính của đường tròn tâm O.

\( \Rightarrow \) sđ cung MAD = 1800

\( \Rightarrow \) sđ cung MA + sđ cung AD = 1800

\( \Rightarrow \) sđ cung \(\dfrac{{AC}}{2}\) + sđ cung AD = 1800

Câu 10 (VDC) (1 điểm)

a) Cho các số thực dương a, b, c thỏa mãn điều kiện \(a + b + c = 3\). Tìm giá trị nhỏ nhất của biểu thức \(A = 4{a^2} + 6{b^2} + 3{c^2}\)

Áp dụng BĐT Cauchy cho 2 số dương ta có:

\(\begin{array}{l}4\left( {{a^2} + 1} \right) \ge 4.2\sqrt {{a^2}.1}  = 8a\\6\left( {{b^2} + \dfrac{4}{9}} \right) \ge 6.2\sqrt {{b^2}.\dfrac{4}{9}}  = 8b\\3\left( {{c^2} + \dfrac{{16}}{9}} \right) \ge 3.2\sqrt {{c^2}.\dfrac{{16}}{9}}  = 8c\end{array}\)

Cộng vế theo vế ta có \(A + 4 + \dfrac{8}{3} + \dfrac{{16}}{3} \ge 8\left( {a + b + c} \right) = 8.3 = 24\)

Vậy \(A \ge 12\)

Dấu bằng xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}{a^2} – 1\\{b^2} = \dfrac{4}{9}\\{c^2} = \dfrac{{16}}{9}\\a,b,c \ge 0\\a + b + c = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = \dfrac{2}{3}\\c = \dfrac{4}{3}\end{array} \right.\)

Vậy \({A_{\min }} = 12 \Leftrightarrow \left( {a;b;c} \right) = \left( {1;\dfrac{2}{3};\dfrac{4}{3}} \right)\)

b) Tìm các số nguyên dương a, b biết các phương trình \({x^2} – 2ax – 3b = 0\) và \({x^2} – 2bx – 3a = 0\), với x là ẩn, đều có nghiệm nguyên.

Xét phương trình \({x^2} – 2ax – 3b = 0\) có \({\Delta _1}’ = {a^2} + 3b > 0 \Rightarrow \) Phương trình có hai nghiệm phân biệt \(x = a \pm \sqrt {{a^2} + 3b} \)

Xét phương trình \({x^2} – 2bx – 3a = 0\) có \({\Delta _2}’ = {b^2} + 3a > 0 \Rightarrow \) Phương trình có hai nghiệm phân biệt \(x = b \pm \sqrt {{b^2} + 3a} \)

Để cả hai phương trình đều có nghiệm nguyên \( \Leftrightarrow {a^2} + 3b\) và \({b^2} + 3a\) đều là số chinh phương.

Do vai trò của a và b là như nhau, không mất tính tổng quát, ta giả sử \(a \ge b\).

Ta chứng minh \({a^2} + 3b \le {\left( {a + 2} \right)^2}\).

Ta có

\(\begin{array}{l}\,\,\,\,\,{a^2} + 3b < {\left( {a + 2} \right)^2}\\ \Leftrightarrow {a^2} + 3b < {a^2} + 4a + 4\\ \Leftrightarrow 3b < 4a + 4\end{array}\)

Luôn đúng do giả sử \(a \ge b\).

\( \Rightarrow {a^2} < {a^2} + 3b < {\left( {a + 2} \right)^2}\,\,\left( {Do\,\,b > 0} \right)\).

Mà a, b là các số nguyên dương \( \Rightarrow {a^2} + 3b = {\left( {a + 1} \right)^2}\) là số chính phương.

\( \Leftrightarrow 3b = 2a + 1 \Rightarrow a = \dfrac{{3b – 1}}{2}\)

Thay vào \({\Delta _2}’\) ta có :  \({\Delta _2}’ = {b^2} + 3.\dfrac{{3b – 1}}{2} \)\(\,= {b^2} + \dfrac{9}{2}b – \dfrac{3}{2} \)\(\,= {b^2} + 2.b.\dfrac{9}{4} + \dfrac{{81}}{{16}} – \dfrac{{105}}{{16}}\)\(\, = {\left( {b + \dfrac{9}{4}} \right)^2} – \dfrac{{105}}{{16}}\) là số chính phương.

Giả sử \({\left( {b + \dfrac{9}{4}} \right)^2} – \dfrac{{105}}{{16}} = {x^2}\,\,\left( {x \in Z} \right) \)

\(\Leftrightarrow \left( {b + \dfrac{9}{4} – x} \right)\left( {b + \dfrac{9}{4} + x} \right) = \dfrac{{105}}{{16}}\)

\(\begin{array}{l} \Leftrightarrow \dfrac{{4b – 4x + 9}}{4}.\dfrac{{4b + 4x + 9}}{4} = \dfrac{{105}}{{16}}\\ \Leftrightarrow \left( {4b – 4x + 9} \right)\left( {4b + 4x + 9} \right) = 5.21 = 1.105\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}4b – 4x + 9 = 5\\4b + 4x + 9 = 21\end{array} \right.\\\left\{ \begin{array}{l}4b – 4x + 9 = 21\\4b + 4x + 9 = 5\end{array} \right.\\\left\{ \begin{array}{l}4b – 4x + 9 = 1\\4b + 4x + 9 = 105\end{array} \right.\\\left\{ \begin{array}{l}4b – 4x + 9 = 105\\4b + 4x + 9 = 1\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}b = 1\\x = 2\end{array} \right.\\\left\{ \begin{array}{l}b = 1\\x =  – 2\end{array} \right.\\\left\{ \begin{array}{l}b = 11\\x = 13\end{array} \right.\\\left\{ \begin{array}{l}b = 11\\x =  – 13\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}b = 1\\b = 11\end{array} \right. \\\Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}b = 1\\a = \dfrac{{3b – 1}}{2} = 1\end{array} \right.\\\left\{ \begin{array}{l}b = 11\\a = \dfrac{{3b – 1}}{2} = 16\end{array} \right.\end{array} \right.\,\,\,\left( {tm} \right)\end{array}\)

\( \Rightarrow \left( {a;b} \right) \in \left\{ {\left( {1;1} \right);\,\,\left( {16;11} \right)} \right\}\)

Do a, b có vai trò như nhau nên \(\left( {a;b} \right) = \left( {11;16} \right)\) cũng thỏa mãn điều kiện bài toán.

Vậy các cặp số \(\left( {a;b} \right)\) thỏa mãn là \(\left( {1;1} \right);\,\,\left( {16;11} \right);\,\,\left( {11;16} \right)\).

Bài liên quan:

  1. ĐỀ TOÁN VÀO LỚP 10 – Vòng 1 – Chuyên KHTN Hà Nội – 2023 – 2024
  2. ĐÁP ÁN MÔN TOÁN – HỆ TOÁN CHUYÊN – TỈNH QUẢNG NINH 2023 – 2024 (V2)
  3. ĐỀ THI TOÁN VÀO LỚP 10 2023 – 2024 – AN GIANG
  4. ĐỀ THI TOAN 9 – ĐỀ HAY THI VÀO LỚP 10
  5. ÔN LUYỆN môn TOÁN THI VÀO 10
  6. ĐỀ THI TUYỂN SINH VÀO LỚP 10 TỈNH ĐAK LẮC, ĐỒNG NAI NĂM 2019-2020
  7. ĐỀ TUYỂN SINH TOÁN QUẬN GÒ VẤP TPHCM – 2024
  8. ĐỀ ÔN THI TUYỂN SINH TOÁN VÀO LỚP 10 – TP.HCM – 2024
  9. 80 ĐỀ THI TUYỂN SINH VÀO 10 MÔN TOÁN CHUYÊN CÁC TỈNH NĂM HỌC 2022-2023 WORD
  10. TUYỂN TÂP ĐỀ TOÁN THAM KHẢO TUYỂN SINH 10 TPHCM 23-24 BẢN CHÍNH PDF.pdf
  11. BỘ 20 ĐỀ TUYỂN SINH VÀO 10 MÔN TOÁN CÁC TỈNH NĂM HỌC 2021-2022 FILE WORD
  12. Sưu tầm các đề thi Toán vào lớp 10 toàn quốc 2022 – 2023
  13. VÀI ĐỀ THI THỬ MÔN TOÁN LỚP 9 VÀO LỚP 10 – HÀ NỘI – 2022
  14. 10 Đề thi tham khảo thi vào lớp 10 môn Toán 2023 – Q6 – HCM – file word
  15. Đề tham khảo môn Toán tuyển sinh vào lớp 10 – Số 12

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Bộ đề ôn thi TN THPT 2025-TS Trần Văn Tấn CB.pdf
  • ĐỀ THAM KHAO TS10 NH 2025-2026 – HCM.pdf
  • TÀI LIỆU ÔN THI VÀO LỚP 10 MÔN TOÁN

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.