• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Toán 12
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Tiện ích Toán
Bạn đang ở:Trang chủ / Toán lớp 10 / Đề thi HK2 Toán 10 – Tham khảo số 9

Đề thi HK2 Toán 10 – Tham khảo số 9

Ngày 08/05/2019 Thuộc chủ đề:Toán lớp 10 Tag với:De thi hk2 toan 10

Đề thi HK2 Toán 10 – Tham khảo số 9

Đề bài

Câu 1 (2.5 điểm).  Cho phương trình \(m{x^2} – 2\left( {m – 1} \right)x + m – 3 = 0\)

a) Giải phương trình khi \(m = 3\).

b) Tìm m để phương trình trên có hai nghiệm \({x_1};{x_2}\) thỏa mãn: \({x_1} + 2{x_2} = 1\).

Câu 2 (2.5 điểm).  Giải các phương trình sau:

a) \(\sqrt {3{x^2} – 4x + 77}  = 2x + 5\)

b)  \({x^2} – x + \sqrt {x + 1}  – 8 = 0\)

Câu 3 (1,0 điểm).  Giải hệ phương trình \(\left\{ \begin{array}{l}{x^2} + {y^2} + x + y = 4\\x\left( {x + y + 1} \right) + y\left( {y + 1} \right) = 2\end{array} \right.{\rm{  }}\)\(\;\left( {x;y \in R} \right)\)

Câu 4 (1,0 điểm).  Cho tam giác \(ABC\) có \(\angle BAC = {60^0};AB = 5;AC = 10\). Gọi \(D\)là trung điểm \(BC\) và \(M\)là điểm thỏa mãn \(3M\vec A + 2M\vec C = \vec 0\).

Tính độ dài \(BM\) và chứng minh rằng \(AD \bot BM\).

Câu 5 (1,0 điểm).  Trong mặt phẳng với   hệ tọa độ Oxy cho tam giác ABC có  trực tâm  H(3; -2) và trung điểm của AB là \(M\left( {\dfrac{1}{2};0} \right)\). Đường thẳng BC có phương trình  x – 3y – 2 = 0. Xác định tọa độ các đỉnh của tam giác ABC.

Câu 6(1,0 điểm).  Cho \(x;y;z\) là các số thực dương thỏa mãn : \(x + y + z = 3\)

Tìm giá trị lớn nhất của biểu thức \(P = \dfrac{x}{{2x + y + z}} + \dfrac{y}{{x + 2y + z}} \)\(\,+ \dfrac{z}{{x + y + 2z}}\)

Câu 7(1,0 điểm).  Cho \(a,\,b,\,c\) là độ dài ba cạnh của một tam giác không nhọn.

Chứng minh rằng  \(\left( {{a^2} + {b^2} + {c^2}} \right)\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{1}{{{c^2}}}} \right) \ge 10\)

Lời giải chi tiết

Câu 1:

a. Giải phương trình khi \(m = 3\).

Khi \(m = 3\) phương trình trở thành: \(3{x^2} – 4x = 0\)

\( \Leftrightarrow x\left( {3x – 4} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{4}{3}\end{array} \right.\)

Kết luận: Nghiệm của phương trình là \(x = 0\) và \(x = \dfrac{4}{3}\)

b. Tìm m để phương trình trên có hai nghiệm \({x_1};{x_2}\) thỏa mãn: \({x_1} + 2{x_2} = 1\).

Để phương trình có hai nghiệm \({x_1};{x_2}\) thì \(\left\{ \begin{array}{l}m \ne 0\\\Delta  \ge 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\{\left( {m – 1} \right)^2} – m\left( {m – 3} \right) \ge 0\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m + 1 \ge 0\end{array} \right. \)

\(\Leftrightarrow \left\{ \begin{array}{l}m \ne 0\\m \ge  – 1\end{array} \right.\) (*)

Áp dụng Vi-et và giả thiết ta có hệ \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2 – \dfrac{2}{m}\left( 1 \right)\\{x_1} + 2{x_2} = 1\left( 2 \right)\\{x_1}{x_2} = 1 – \dfrac{3}{m}\left( 3 \right)\end{array} \right.\)

Từ (1) và (2) suy ra \({x_2} =  – 1 + \dfrac{2}{m};{x_1} = 3 – \dfrac{4}{m}\) (4)

Thế (4) vào (3) được

\(\begin{array}{l}\left( { – 1 + \dfrac{2}{m}} \right)\left( {3 – \dfrac{4}{m}} \right) = 1 – \dfrac{3}{m} \\\Leftrightarrow 4{m^2} – 13m + 8 = 0\\ \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{{13 – \sqrt {41} }}{8}\\m = \dfrac{{13 + \sqrt {41} }}{8}\end{array} \right.\end{array}\).

Kết hợp điều kiện (*) suy ra  \(\left[ \begin{array}{l}m = \dfrac{{13 – \sqrt {41} }}{8}\\m = \dfrac{{13 + \sqrt {41} }}{8}\end{array} \right.\)

Câu 2:

a) Giải phương trình \(\sqrt {3{x^2} – 4x + 77}  = 2x + 5\)

Phương trình \( \Leftrightarrow \left\{ \begin{array}{l}2x + 5 \ge 0\\3{x^2} – 4x + 77 = {\left( {2x + 5} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge  – \dfrac{5}{2}\\{x^2} + 24x – 52 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x \ge  – \dfrac{5}{2}\\\left[ \begin{array}{l}x = 2\\x =  – 26\end{array} \right.\end{array} \right. \Leftrightarrow x = 2\)

Nghiệm của phương trình là \(x = 2\)

b)  Giải phương trình  \({x^2} – x + \sqrt {x + 1}  – 8 = 0\).(1)

ĐKXĐ: \(x \ge  – 1\)

(1) \( \Leftrightarrow \left( {{x^2} – x – 6} \right) + \left( {\sqrt {x + 1}  – 2} \right) = 0\)

\( \Leftrightarrow \left( {x – 3} \right)\left( {x + 2} \right) + \dfrac{{x – 3}}{{\sqrt {x + 1}  + 2}} = 0\)

\( \Leftrightarrow \left( {x – 3} \right)\left[ {x + 2 + \dfrac{1}{{\sqrt {x + 1}  + 2}}} \right] = 0\)

\( \Leftrightarrow x = 3\)( vì \(x + 2 + \dfrac{1}{{\sqrt {x + 1}  + 2}} > 0,\forall x \ge  – 1\))

Câu 3:  Giải hệ phương trình\(\left\{ \begin{array}{l}{x^2} + {y^2} + x + y = 4\\x\left( {x + y + 1} \right) + y\left( {y + 1} \right) = 2\end{array} \right.\)(I)

Hệ \(\left( I \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} + x + y = 4\\{x^2} + {y^2} + x + y + xy = 2\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + y} \right)^2} – 2xy + x + y = 4\\{\left( {x + y} \right)^2} – xy + x + y = 2\end{array} \right.\)

Đặt \(S = x + y;P = xy\)(đk:\({S^2} \ge 4P)\)

Hệ (I) trở thành \(\left\{ \begin{array}{l}{S^2} – 2P + S = 4\\{S^2} – P + S = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}P =  – 2\\\left[ \begin{array}{l}S = 0\\S =  – 1\end{array} \right.\end{array} \right.\)

Với \(S = 0,P =  – 1\)(thỏa mãn). Giải hệ được \(\left( {x;y} \right) = \left( {\sqrt 2 ; – \sqrt 2 } \right),\) \(\left( {x;y} \right) = \left( { – \sqrt 2 ;\sqrt 2 } \right)\)

Với \(S =  – 1,P =  – 2\)(thỏa mãn).

Giải hệ được \(\left( {x;y} \right) = \left( {1; – 2} \right),\left( {x;y} \right) = \left( { – 2;1} \right)\)

Kết luận: Vậy hệ có 2 nghiệm \(\left( {x;y} \right) = \left( {1; – 2} \right),\left( {x;y} \right) = \left( { – 2;1} \right)\)

Câu 4:

Từ giả thiết suy ra \(AM = \dfrac{2}{5}AC = 4\)

Đề thi HK2 Toán 10 – Tham khảo số 9

Áp dụng định lý côsin vào \(\Delta ABM\) được \(B{M^2} = A{B^2} + A{M^2} – 2AB.AM.\cos BAM = 21 \) \(\Leftrightarrow BM = \sqrt {21} \)

\(\eqalign{
& \overrightarrow {AD} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right); \cr
& \overrightarrow {BM} = \overrightarrow {AM} – \overrightarrow {AB} = \frac{2}{5}\overrightarrow {AC} – \overrightarrow {AB} \cr} \)

\(\eqalign{
& 2\overrightarrow {AD} .5\overrightarrow {BM} = \left( {\overrightarrow {AB} + \overrightarrow {AC} .} \right)\left( {2\overrightarrow {AC} – 5\overrightarrow {AB} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = – 5A{B^2} + 2A{C^2} – 3\overrightarrow {AC} .\overrightarrow {AB} = 0 \cr} \)

Vậy \(AD \bot BM\)

Câu 5:

Đề thi HK2 Toán 10 – Tham khảo số 9

– Phương trình AH:     \(3(x – 3) + 1.(y + 2) = 0\)

\( \Leftrightarrow 3x + y – 7 = 0\)

Do \(A \in AH;B \in BC.\) Đặt  \(A({x_1};7 – 3{x_1});B({x_2};\dfrac{{{x_2} – 2}}{3}).\)

M là trung điểm AB \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = 1}\\{(7 – 3{x_1}) + \dfrac{{{x_2} – 2}}{3} = 0}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_1} = 2}\\{{x_2} =  – 1}\end{array}} \right.\)  \(\Rightarrow\) A(2; 1); B(-1; -1).

Đặt \(C({x_3};\dfrac{{{x_3} – 2}}{3}).\) Có : \(\overrightarrow {AC}  = \left( {{x_3} – 2;\dfrac{{{x_3} – 2}}{3} – 1} \right);\) \(\;\overrightarrow {BH}  = (4; – 1)\)

Vì  \(BH \bot AC \Leftrightarrow \overrightarrow {BH} .\overrightarrow {AC}  = 0\)

\( \Leftrightarrow 4({x_3} – 2) – 1.\dfrac{{{x_3} – 5}}{3} = 0\) \( \Leftrightarrow {x_3} = \dfrac{{19}}{{11}}\) \( \Rightarrow \)\(C\left( {\dfrac{{19}}{{11}}; – \dfrac{1}{{11}}} \right)\).

Vậy  A(2; 1); B(-1; -1); \(C\left( {\dfrac{{19}}{{11}}; – \dfrac{1}{{11}}} \right)\).

Câu 6:

\(P = \dfrac{x}{{x + 3}} + \dfrac{y}{{y + 3}} + \dfrac{z}{{z + 3}}\)\(\, = 3 – 3\left( {\dfrac{1}{{x + 3}} + \dfrac{1}{{y + 3}} + \dfrac{1}{{z + 3}}} \right)\)

Ta có \(\left[ {\left( {x + 3} \right) + \left( {y + 3} \right) + \left( {z + 3} \right)} \right]\left( {\dfrac{1}{{x + 3}} + \dfrac{1}{{y + 3}} + \dfrac{1}{{z + 3}}} \right) \ge 9\)

\( \Leftrightarrow \dfrac{1}{{x + 3}} + \dfrac{1}{{y + 3}} + \dfrac{1}{{z + 3}} \ge \dfrac{3}{4}\)

\( \Rightarrow P \le \dfrac{3}{4}\), dấu “=” xảy ra khi x = y = z = 1

Vậy GTLN của P là \(\dfrac{3}{4}\)khi x = y = z = 1

Câu 7:  Do \(a,\,b,\,c\) là độ dài ba cạnh của một tam giác không nhọn nên có một trong các bất đẳng thức sau xảy ra: \({a^2} \ge {b^2} + {c^2},\,\,{b^2} \ge {c^2} + {a^2},{c^2} \ge {a^2} + {b^2}\). Giả sử \({a^2} \ge {b^2} + {c^2}\). Đặt \(A = \left( {{a^2} + {b^2} + {c^2}} \right)\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{1}{{{c^2}}}} \right)\)

Khi đó ta có:

\(\left( {{a^2} + {b^2} + {c^2}} \right)\left( {\dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} + \dfrac{1}{{{c^2}}}} \right)\)\(\, = 1 + {a^2}\left( {\dfrac{1}{{{b^2}}} + \dfrac{1}{{{c^2}}}} \right) + \dfrac{{{b^2} + {c^2}}}{{{a^2}}} + \left( {{b^2} + {c^2}} \right)\left( {\dfrac{1}{{{b^2}}} + \dfrac{1}{{{c^2}}}} \right)\)

\( \Leftrightarrow A \ge 1 + {a^2}.\dfrac{4}{{{b^2} + {c^2}}} + \dfrac{{{b^2} + {c^2}}}{{{a^2}}} + 4\)

\( \Leftrightarrow A \ge 1 + \dfrac{{3a{}^2}}{{{b^2} + {c^2}}} + \dfrac{{a{}^2}}{{{b^2} + {c^2}}} + \dfrac{{{b^2} + {c^2}}}{{a{}^2}} + 4 \)\(\,\ge 1 + 3 + 2\sqrt {\dfrac{{a{}^2}}{{{b^2} + {c^2}}}.\dfrac{{{b^2} + {c^2}}}{{a{}^2}}}  + 4 = 10\)

Dấu “=” xảy ra khi tam giác ABC vuông cân tại A

Bài liên quan:

  1. ĐỀ THI HK2 MÔN TOÁN THAM KHẢO LỚP 10 – 2025.docx
  2. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 09 _HDG 2024 – 2025.docx
  3. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 10 _HDG 2024 – 2025.docx
  4. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 07 _HDG 2024 – 2025.docx
  5. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 08 _HDG 2024 – 2025.docx
  6. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 05 _HDG 2024 – 2025.docx
  7. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 06 _HDG 2024 – 2025.docx
  8. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 03 _HDG 2024 – 2025.docx
  9. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 04 _HDG 2024 – 2025.docx
  10. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 02 _HDG 2024 – 2025.docx
  11. ĐỀ ÔN KT CK2 TOÁN 10 CTST ĐỀ SỐ 01 _HDG 2024 – 2025.docx
  12. 10 ĐỀ THI HK2 – môn TOÁN K10 2025.zip
  13. 10 ĐỀ THI HK2 CD TOÁN K10 2025.zip
  14. 10 ĐỀ THI HK2 KNTT TOÁN K10 2025.rar
  15. 10 ĐỀ THI HK2 CTST TOÁN K10 2025.rar

Reader Interactions

Để lại một bình luận Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • CHUYÊN ĐỀ TOÁN 10 CHÂN TRỜI SÁNG TẠO ĐẦY ĐỦ FILE WORD 2023
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Chân trời – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Kết nối – 2022
  • GIÁO ÁN (KHBD) TOÁN 10 – SGK Cánh diều – 2022
  • Học toán lớp 10
  • Chuyên đề Toán 10 (CTST) – HK1

Booktoan.com (2015 - 2025) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.