==== Câu hỏi: Trong không gian với hệ tọa độ (Oxyz), có bao nhiêu mặt phẳng đi qua điểm \(A\left( {1;2;3} \right)\) và tạo với các mặt phẳng \(\left( {{\rm{Ox}}y} \right),\left( {Oyx} \right)\) cùng một góc bằng 600? A. 2 B. 1 C. Vố số D. 4 Hãy chọn trả lời đúng trước khi xem … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ (Oxyz), có bao nhiêu mặt phẳng đi qua điểm \(A\left( {1;2;3} \right)\) và tạo với các mặt phẳng \(\left( {{\rm{Ox}}y} \right),\left( {Oyx} \right)\) cùng một góc bằng 600?
Kết quả tìm kiếm cho: ty so
Đề: Trong không gian với hệ tọa độ Oxyz, tọa độ điểm B đối xứng với điểm \(A\left( {1;2;1} \right)\) qua mặt phẳng \(\left( P \right):y – z = 0\) là:
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, tọa độ điểm B đối xứng với điểm \(A\left( {1;2;1} \right)\) qua mặt phẳng \(\left( P \right):y - z = 0\) là: A. \(\left( {1; - 2;1} \right)\) B. \(\left( {2;1;1} \right)\) C. \(\left( { - 1;1;2} \right)\) D. \(\left( {1;1;2} … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, tọa độ điểm B đối xứng với điểm \(A\left( {1;2;1} \right)\) qua mặt phẳng \(\left( P \right):y – z = 0\) là:
Đề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x + 7}}{3} = \frac{{y – 5}}{{ – 1}} = \frac{{z – 9}}{4},\,{d_2}:\frac{x}{3} = \frac{{y + 4}}{{ – 1}} = \frac{{z + 18}}{4}\). Tính khoảng cách giữa d1 và d2.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x + 7}}{3} = \frac{{y - 5}}{{ - 1}} = \frac{{z - 9}}{4},\,{d_2}:\frac{x}{3} = \frac{{y + 4}}{{ - 1}} = \frac{{z + 18}}{4}\). Tính khoảng cách giữa d1 và d2. A. \(d\left( {{d_1};{d_2}} \right) = 25.\) B. \(d\left( {{d_1};{d_2}} \right) = … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({d_1}:\frac{{x + 7}}{3} = \frac{{y – 5}}{{ – 1}} = \frac{{z – 9}}{4},\,{d_2}:\frac{x}{3} = \frac{{y + 4}}{{ – 1}} = \frac{{z + 18}}{4}\). Tính khoảng cách giữa d1 và d2.
Đề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;5;0} \right),B\left( {3;3;6} \right)\) và \(d:\frac{{x + 1}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}.\) Tìm điểm M thuộc d để tam giác MAB có diện tích nhỏ nhất.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;5;0} \right),B\left( {3;3;6} \right)\) và \(d:\frac{{x + 1}}{2} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}.\) Tìm điểm M thuộc d để tam giác MAB có diện tích nhỏ nhất. A. \(M(-1;1;0)\) B. \(M(3;-1;4)\) C. \(M(-3;2;-2)\) D. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {1;5;0} \right),B\left( {3;3;6} \right)\) và \(d:\frac{{x + 1}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{z}{2}.\) Tìm điểm M thuộc d để tam giác MAB có diện tích nhỏ nhất.
Đề: Trong không gian cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\) và mặt phẳng \(\left( P \right):2x – 2y + z + 3 = 0\). Gọi M(a; b; c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến (P) là lớn nhất. Tính tổng a+b+c.
==== Câu hỏi: Trong không gian cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\) và mặt phẳng \(\left( P \right):2x - 2y + z + 3 = 0\). Gọi M(a; b; c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến (P) là lớn nhất. Tính tổng a+b+c. A. \(a+b+c=5\) B. … [Đọc thêm...] vềĐề: Trong không gian cho mặt cầu \(\left( S \right):{\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} + {\left( {z – 3} \right)^2} = 9\) và mặt phẳng \(\left( P \right):2x – 2y + z + 3 = 0\). Gọi M(a; b; c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến (P) là lớn nhất. Tính tổng a+b+c.
Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 2}} = \frac{z}{{ – 1}}\) và mặt phẳng \((P):x + y – 2z + 2 = 0,\) đường thẳng \(\Delta \) là hình chiếu vuông góc của đường thẳng d trên mặt phẳng (Oxy). Tìm tọa độ giao điểm I của đường thẳng \(\Delta \) với mặt phẳng (P).
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{z}{{ - 1}}\) và mặt phẳng \((P):x + y - 2z + 2 = 0,\) đường thẳng \(\Delta \) là hình chiếu vuông góc của đường thẳng d trên mặt phẳng (Oxy). Tìm tọa độ giao điểm I của đường thẳng \(\Delta \) với mặt phẳng (P). A. \(I( - … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y – 1}}{{ – 2}} = \frac{z}{{ – 1}}\) và mặt phẳng \((P):x + y – 2z + 2 = 0,\) đường thẳng \(\Delta \) là hình chiếu vuông góc của đường thẳng d trên mặt phẳng (Oxy). Tìm tọa độ giao điểm I của đường thẳng \(\Delta \) với mặt phẳng (P).
Đề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\frac{{x + 1}}{2} = \frac{{y + 2}}{{ – 1}} = \frac{z}{2}\). Tìm tọa độ điểm H là hình chiếu vuông góc của điểm \(A\left( {2; – 3;1} \right)\) lên \(\Delta \).
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\frac{{x + 1}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\). Tìm tọa độ điểm H là hình chiếu vuông góc của điểm \(A\left( {2; - 3;1} \right)\) lên \(\Delta \). A. \(H\left( { - 1; - 2;0} \right)\) B. \(H\left( {1; - 3;2} … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\frac{{x + 1}}{2} = \frac{{y + 2}}{{ – 1}} = \frac{z}{2}\). Tìm tọa độ điểm H là hình chiếu vuông góc của điểm \(A\left( {2; – 3;1} \right)\) lên \(\Delta \).
Đề: Tìm tọa độ hình chiếu vuông góc H của điểm \(A\left( { – 3;2;5} \right)\) lên mặt phẳng \(\left( P \right):2x + 3y – 5z – 13 = 0\).
==== Câu hỏi: Tìm tọa độ hình chiếu vuông góc H của điểm \(A\left( { - 3;2;5} \right)\) lên mặt phẳng \(\left( P \right):2x + 3y - 5z - 13 = 0\). A. \(H\left( {2;3;4} \right)\) B. \(H\left( {3; - 3;3} \right)\) C. \(H\left( { - 1;5;0} \right)\) D. \(H\left( {6;4;1} \right)\) … [Đọc thêm...] vềĐề: Tìm tọa độ hình chiếu vuông góc H của điểm \(A\left( { – 3;2;5} \right)\) lên mặt phẳng \(\left( P \right):2x + 3y – 5z – 13 = 0\).
Đề: Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \((P):x + y + z – 1 = 0\) và hai điểm \(A\left( {1; – 3;0} \right),B\left( {5; – 1; – 2} \right)\). Tìm tọa độ điểm M trên mặt phẳng (P) sao cho \(\left| {MA – MB} \right|\) đạt giá trị lớn nhất.
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \((P):x + y + z - 1 = 0\) và hai điểm \(A\left( {1; - 3;0} \right),B\left( {5; - 1; - 2} \right)\). Tìm tọa độ điểm M trên mặt phẳng (P) sao cho \(\left| {MA - MB} \right|\) đạt giá trị lớn nhất. A. M(3;2;-4) B. M(0;0;1) C. … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \((P):x + y + z – 1 = 0\) và hai điểm \(A\left( {1; – 3;0} \right),B\left( {5; – 1; – 2} \right)\). Tìm tọa độ điểm M trên mặt phẳng (P) sao cho \(\left| {MA – MB} \right|\) đạt giá trị lớn nhất.
Đề: Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( {2; – 1;1} \right)\) và đường thẳng \(\Delta :\frac{{x – 1}}{2} = \frac{{y + 1}}{{ – 1}} = \frac{z}{2}\). Tìm tọa độ điểm K hình chiếu vuông góc của điểm M trên đường thẳng \(\Delta .\)
==== Câu hỏi: Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( {2; - 1;1} \right)\) và đường thẳng \(\Delta :\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\). Tìm tọa độ điểm K hình chiếu vuông góc của điểm M trên đường thẳng \(\Delta .\) A. \(K\left( {\frac{{17}}{{12}}; - \frac{{13}}{{12}};\frac{2}{3}} … [Đọc thêm...] vềĐề: Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( {2; – 1;1} \right)\) và đường thẳng \(\Delta :\frac{{x – 1}}{2} = \frac{{y + 1}}{{ – 1}} = \frac{z}{2}\). Tìm tọa độ điểm K hình chiếu vuông góc của điểm M trên đường thẳng \(\Delta .\)