• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
Bạn đang ở:Trang chủ / Giải bài tập Toán 12 / Giải bài tập Bài 2 Khối đa diện lồi và khối đa diện đều – SGK hình học 12 cơ bản

Giải bài tập Bài 2 Khối đa diện lồi và khối đa diện đều – SGK hình học 12 cơ bản

Đăng ngày: 07/11/2018 Biên tâp: admin Để lại bình luận Thuộc chủ đề:Giải bài tập Toán 12

Giải bài 1 trang 18 SGK Hình học 12. 

Đề bài

Cắt bìa theo mẫu dưới đây (h.1.23), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều.

Giải bài tập Bài 2 Khối đa diện lồi và khối đa diện đều – SGK hình học 12 cơ bản

Phương pháp giải

Dùng một miếng bìa, kẻ các đường kẻ như hình mẫu rồi gấp tấm bìa theo các đường đó sẽ tạo thành các hình tứ diện đều, hình lập phương và bát diện đều.

Lời giải chi tiết

Đây là bài tập thủ công, học sinh tự thực hành.


Giải bài 2 trang 18 SGK Hình học 12. 

Đề bài

Cho hình lập phương \((H)\). Gọi \((H’)\) là hình bát diện đều có các đỉnh là tâm các mặt của \((H)\). Tính tỉ số diện tích toàn phần của \((H)\) và \((H’)\).

+) Bát diện đều là khối đa diện gồm 8 mặt là 8 tam giác đều.

+) Diện tích toàn phần của hình bát diện đều = 8. diện tích 1 mặt.

Lời giải chi tiết

 

Giải bài tập Bài 2 Khối đa diện lồi và khối đa diện đều – SGK hình học 12 cơ bản

Giả sử khối lập phương có cạnh bằng \(a\). Khi đó diện tích toàn phần của nó là: \(S_1 = 6. a^2\)

Gọi \(M\) là tâm của hình vuông \(AMCD\); \(Q\) là tâm hình vuông \(ADD’A’\); \(P\) là tâm hình vuông \(ABB’A’\); \(N\) là tâm hình vuông \(BCC’B’\); \(E\) là tâm hình vuông \(DCC’D’\) và \(F\) là tâm hình vuông \(A’B’C’D’\).

Xét bát diện đều thu được, khi đó diện tích toàn phần của nó là \(8\) lần diện tích tam giác đều \(MQE\) (hình vẽ)

Xét tam giác \(ACD’\), ta có \(M, Q\) lần lượt là trung điểm của \(AC\) và \(AD’\) nên \(MQ\) là đường trung bình của tam giác \(ACD’\), do đó \(MQ = {1 \over 2}C{\rm{D}}’ = {1 \over 2}\sqrt 2a \)

Ta có \({S_{AMQE}} = {1 \over 2}{\left( {{1 \over 2}\sqrt 2a } \right)^2}.{{\sqrt 3 } \over 2} = {1 \over 8}{a^2}\sqrt 3 \)

Diện tích xung quanh của bát diện đều là: \({S_2} = 8.{1 \over 8}.{a^2}\sqrt 3  = {a^2}\sqrt 3 \)

Do đó: \({{{S_1}} \over {{S_2}}} = {{6{{\rm{a}}^2}} \over {a\sqrt 3 }} = 2\sqrt 3 \)


Giải bài 3 trang 18 SGK Hình học 12.

Đề bài

Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một hình tứ diện đều.

+) Sử dụng tính chất đường trung tuyến của tam giác và định lý Ta-lét để làm bài toán.

Lời giải chi tiết

 

Giải bài tập Bài 2 Khối đa diện lồi và khối đa diện đều – SGK hình học 12 cơ bản

Gọi \(A’, B’, C’, D’\) lần lượt là trọng tâm của các tam giác đều \(BCD, ACD, ABD, ABC\).

Gọi \(M\) là trung điểm \(BC\):

Ta có: \({{M{\rm{D}}’} \over {MA}} = {{MA’} \over {M{\rm{D}}}} = {1 \over 3}\) (tính chất đường trung tuyến).

\( \Rightarrow A’D’//A{\rm{D}}\)  (định lý Ta-lét).

và \(A’D’ = {1 \over 3}A{\rm{D}} = {a \over 3}\)

Tương tự \(A’B’ = B’C’ = C’A’ = B’D’ = C’D’ = {a \over 3}\)

Vậy \(A’B’C’D’\) là tứ diện đều


Giải bài 4 trang 18 SGK Hình học 12.

Đề bài

Cho hình bát diện đều \(ABCDEF\)

Giải bài tập Bài 2 Khối đa diện lồi và khối đa diện đều – SGK hình học 12 cơ bản

Chứng minh rằng :

a) Các đoạn thẳng \(AF, BD\) và \(CE\) đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.

b) \(ABFD, AEFC\) và \(BCDE\) là những hình vuông.

+) Sử dụng tính chất của mặt phẳng trung trực.

+) Dấu hiệu nhân biết hình vuông: Hình thoi có hai đường chéo bằng nhau là hình vuông.

Lời giải chi tiết

a) Do \(B, C, D, E\) cách đều \(A\) và \(F\) nên chúng đồng phẳng (cùng thuộc mặt phẳng trung trực của \(AF\)).

Tương tự, \(A, B, F, D\) đồng phẳng và \(A, C, F, E\) đồng phẳng

Gọi \(I\) là giao của \((AF)\) với \((BCDE)\). Khi đó \(B, I, D\) là những điểm chung của hai mặt phẳng \((BCDE)\) và \((ABFD)\) nên chúng thẳng hàng. Tương tự, \(E, I , C\) thẳng hàng.

Vậy \(AF, BD, CE\) đồng quy tại \(I\).

Vì \(BCDE\) là hình thoi nên \(EC\) vuông góc với \(BC\) và cắt \(BC\) tại \(I\) là trung điểm của mỗi đường. \(I\) là trung điểm của \(AF\) và \(AF\) vuông góc với \(BD\) và \(EC\), do đó các đoạn thẳng \(AF, BD\), và \(CE\) đôi một vuông góc với nhau cắt nhau tại trung điểm của chúng.

b) Ta có tứ giác \(DCDE\) là hình thoi.

Do \(AI\) vuông góc \((BCDE)\) và \(AB = AC =AD = AE\) nên \(IB = IC= ID = IE\).

Từ đó suy ra hình thoi \(BCDE\) là hình vuông. Tương tự \(ABFD, AEFC\) là những hình vuông.

 
======================

giai bai tap hinh hoc 12

giai bai tap hinh hoc 12

giai bai tap hinh hoc 12

Tag với:GBT hinh hoc 12 chuong 1

Bài liên quan:

  • Ôn tập chương I Khối đa diện
  • Giải bài tập phần trắc nghiệm Ôn Chương 1 – SGK hình học 12 cơ bản
  • Giải bài tập Bài 9,10,11,12 Ôn Chương 1 – SGK hình học 12 cơ bản
  • Giải bài tập Bài 5,6,7,8 Ôn Chương 1 – SGK hình học 12 cơ bản
  • Giải bài tập Bài 1-4 Ôn Chương 1 – SGK hình học 12 cơ bản
  • Giải bài tập Bài 3. Khái niệm về thể tích của khối đa diện – SGK hình học 12 cơ bản
  • Giải bài tập Bài 1 Khối đa diện – SGK hình học 12 cơ bản

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập Giải Tích 12 CB – Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
  • Giải Bài Tập Giải Tích 12 CB – Chương II: Hàm số lũy thừa. Hàm số mũ và hàm số logarit
  • Giải Bài Tập Giải Tích 12 CB – Chương III: Nguyên hàm – Tích phân và ứng dụng
  • Giải Bài Tập Giải Tích 12 CB – Chương IV: SỐ PHỨC
  • Giải Bài Tập Hình Học 12 CB – Chương I KHỐI ĐA DIỆN 
  • Giải Bài Tập Hình Học 12 CB – Chương II MẶT NÓN , MẶT TRỤ, MẶT CẦU  
  • Giải Bài Tập Hình Học 12 CB – Chương III: PP Tọa độ trong không gian
  • Giải Bài Tập Toán 12 nâng cao




Booktoan.com (2015 - 2021) Học Toán online - Giải bài tập môn Toán, Lý, Hóa, Sinh, Anh, Soạn Văn, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.