• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Giải bài tập Bài 1 Hệ tọa độ trong không gian – chương 3 hình học 12 cơ bản

Đăng ngày: 02/04/2020 Biên tập: admin Thuộc chủ đề:Giải bài tập Toán 12 Tag với:GBT hinh hoc 12 chuong 3

Giải bài tập Bài 1 Hệ tọa độ trong không gian – chương 3 hình học 12 cơ bản


1. Tọa độ của điểm và của vectơ

a) Hệ tọa độ

Bài 1 Hệ tọa độ trong không gian

Trong không gian, cho ba trục xOx’, yOy’, zOz’ vuông góc với nhau từng đôi một.

Các vectơ \(\overrightarrow i ,\,\,\overrightarrow j ,\,\overrightarrow k\) lần lượt là các vectơ đơn vị trên các trục xOx’, yOy’, zOz’ với: \(\left | \vec{i} \right |=\left | \vec{j} \right |=\left | \vec{k} \right |=1.\)

Hệ trục như vậy được gọi là hệ trục tọa độ Oxyz, với O là gốc tọa độ.

b) Tọa độ của vectơ trong không gian

Trong không gian Oxyz, cho vectơ \(\vec{u}\) tồn tại duy nhất bộ số \((x,y,z)\) sao cho: \(\overrightarrow{u}=(x;y;z)\)\(\Leftrightarrow \vec{u}=x\vec{i}+y\vec{j}+z\vec{k}.\)

Bộ số: \((x,y,z)\) được gọi là tọa độ của vectơ \(\vec{u}\).

c) Tọa độ điểm trong không gian

Trong không gian Oxyz, cho điểm A tùy ý tồn tại duy nhất bộ số \((x_A,y_A,z_A)\) sao cho: \(A(x_A,y_A,z_A)\Leftrightarrow \overrightarrow{OA}=(x_A;y_A;z_A).\)

Bộ số \((x_A,y_A,z_A)\) được gọi là tọa độ điểm A.

2. Biểu thức tọa độ của các phép toán vectơ

  • Cho hai vectơ \(\vec{u}=(x;y;z)\) và \(\vec{u’}=(x’;y’; z’)\):
    • \(\vec{u}+\vec{u’}=(x+x’;y+y’;z+ z’)\)
    • \(\vec{u}-\vec{u’}=(x-x’;y-y’;z- z’)\)
    • \(k\vec{u}=(kx;ky;kz)\)
    • \(\vec{u}=u’\Leftrightarrow \left\{\begin{matrix} x=x’\\ y=y’\\ z=z’ \end{matrix}\right.\)
    • \(\vec{u}=\vec{u’}\) cùng phương \(\Leftrightarrow \left\{\begin{matrix} x=kx’\\ y=ky’\\ z=kz’ \end{matrix}\right.\)
    • \(\left | \vec{u} \right |=\sqrt{x^2+y^2+z^2}\)
  • Cho hai điểm \(A(x_A,y_A,z_A)\); \(B(x_B,y_B,z_B)\):
    • \(\overrightarrow{AB}=(x_B-x_A;y_B-y_A;z_B-z_A)\)
    • \(AB=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2+(z_B-z_A)^2}\)
    • \(\overrightarrow{IA}=k.\overrightarrow{IB}(k\neq 1)\Leftrightarrow \left\{\begin{matrix} x_I=\frac{x_A-k.x_B}{1-k}\\ \\ y_I=\frac{y_A-k.y_B}{1-k}\\ \\ z_I=\frac{z_A-k.z_B}{1-k} \end{matrix}\right.\)
    • Đặc biệt I là trung điểm AB thì: \(\left\{\begin{matrix} x_I=\frac{x_A+x_B}{2}\\ \\ y_I=\frac{y_A+y_B}{2}\\ \\ z_I=\frac{z_A+z_B}{2} \end{matrix}\right.\)
    • G là trọng tâm \(\Delta ABC\): \(\left\{\begin{matrix} x_G=\frac{x_A+x_B+x_C}{3}\\ \\ y_G=\frac{y_A+y_B+y_C}{3}\\ \\ z_G=\frac{z_A+z_B+z_C}{3} \end{matrix}\right.\)
    • G là trọng tâm của tứ diện ABCD: \(\left\{\begin{matrix} x_G=\frac{x_A+x_B+x_C+x_D}{4}\\ \\ y_G=\frac{y_A+y_B+y_C+y_D}{4}\\ \\ z_G=\frac{z_A+z_B+z_C+z_D}{4} \end{matrix}\right.\)

​3. Tích vô hướng

  • Công thức tính tích vô hướng: \(\vec{a}.\vec{b}=\left | \vec{a} \right |.\left | \vec{b} \right |.cos(\vec{a},\vec{b})\).
  • Biểu thức tọa độ của tích vô hướng: \(\left.\begin{matrix} \vec{a}=(x_1;y_1;z_1)\\ \vec{b}=(x_2;y_2;z_2) \end{matrix}\right\} \vec{a}.\vec{b} = x_1.x_2 + y_1.y_2 + z_1.z_2\).
  • Công thức tính góc giữa hai vectơ: \(cos(\vec a,\vec b) = \frac{{\vec a.\vec b}}{{\left| {\vec a} \right|.\left| {\vec b} \right|}}.\)

4. Phương trình mặt cầu

  • Trong không gian Oxyz, mặt cầu tâm I(a;b;c), bán kính R có phương trình: \((x-a)^2+(y-b)^2+(z-c)^2=R^2.\)
  • Nhận xét: Phương trình mặt cầu có thể viết dưới dạng \(x^2+y^2+z^2-2Ax-2By-2Cz+D=0\), điều kiện \(A^2+B^2+C^2-D> 0\).

Khi đó, mặt cầu có tâm \(I(A;B;C)\), bán kính \(R = \sqrt {{A^2} + {B^2} + {C^2} – D} .\)

————-

giai bai tap hinh hoc 12

giai bai tap hinh hoc 12

giai bai tap hinh hoc 12

giai bai tap hinh hoc 12

Thuộc chủ đề:Giải bài tập Toán 12 Tag với:GBT hinh hoc 12 chuong 3

Bài liên quan:

  1. Giải bài tập Trắc nghiệm Ôn tập chương 3 hình học 12 cơ bản
  2. Giải bài tập Ôn tập chương 3 hình học 12 cơ bản
  3. Giải bài tập Bài 3: Phương trình đường thẳng trong không gian – chương 3 hình học 12 cơ bản
  4. Giải bài tập Bài 2: Phương trình mặt phẳng – chương 3 hình học 12 cơ bản

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC

  • Giải Bài Tập Giải Tích 12 CB – Chương I: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
  • Giải Bài Tập Giải Tích 12 CB – Chương II: Hàm số lũy thừa. Hàm số mũ và hàm số logarit
  • Giải Bài Tập Giải Tích 12 CB – Chương III: Nguyên hàm – Tích phân và ứng dụng
  • Giải Bài Tập Giải Tích 12 CB – Chương IV: SỐ PHỨC
  • Giải Bài Tập Hình Học 12 CB – Chương I KHỐI ĐA DIỆN 
  • Giải Bài Tập Hình Học 12 CB – Chương II MẶT NÓN , MẶT TRỤ, MẶT CẦU  
  • Giải Bài Tập Hình Học 12 CB – Chương III: PP Tọa độ trong không gian
  • Giải Bài Tập Toán 12 nâng cao




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.