• Skip to content
  • Skip to primary sidebar
  • Học toán
  • Sách toán
  • Môn Toán
  • Đề thi toán
  • Môn Lý
  • Môn Hóa
  • Môn Anh
  • Môn Sinh
  • Môn Văn
  • Bài mới

Sách Toán - Học toán

Giải bài tập Toán, Lý, Hóa, Sinh, Anh, Soạn Văn từ lớp 1 đến lớp 12, Học toán và Đề thi toán

You are here: Home / Giải sách bài tập Toán 11 / Đề kiểm tra 45 phút – SBT Chương I – Hình học 11

Đề kiểm tra 45 phút – SBT Chương I – Hình học 11

31/03/2018 by admin Leave a Comment

Đề kiểm tra 45 phút – Chương I – Hình học 11 – SBT Toán lớp 11 – Đề 1 trang 41 Sách bài tập (SBT) Hình học 11 – Đề 2 trang 42 Sách bài tập (SBT) Hình học 11 – Đề 3 trang 42 Sách bài tập (SBT) Hình học 11

Đề 1 trang 41 Sách bài tập (SBT) Hình học 11

Câu 1. (5 điểm )

Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(3x – y – 3 = 0\).Viết phương trình đường thẳng d1 là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( { – 1;2} \right)\) và phép quay tâm O góc quay -90°.

Câu 2. (5 điểm )

Trong mặt phẳng Oxy cho đường tròn \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} = 9\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {2;0} \right)\) phép vị tự tâm O tỉ số \(k =  – 3\).

Giải:

Câu 1.

Lấy điểm \(M = \left( {x;y} \right)\)

Giả sử \({M_1} = {T_{\overrightarrow v }}\left( M \right)\) và \(M’ = {Q_{\left( {O, – {{90}^0}} \right)}}\left( {{M_1}} \right)\)

Ta có:

\(\left\{ \matrix{
{x_1} = – 1 + x \hfill \cr
{y_1} = 2 + y \hfill \cr} \right.\) và

\(\left\{ \matrix{
x’ = {y_1} \hfill \cr
y’ = – {x_1} \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x = 1 – y` \hfill \cr
y = x’ – 2 \hfill \cr} \right.\)

Thế \(\left( {x;y} \right)\) theo \(\left( {x’;y’} \right)\) vào phương trình , ta có:

\(3\left( {1 – y’} \right) – \left( {x’ – 2} \right) – 3 = 0\). Như vậy phương trình d’ là :

\(x’ + 3y’ – 2 = 0\) hay \(x + 3y – 2 = 0\).

Câu 2. Cách 1.

Giả sử \({M_1} = {T_{\overrightarrow v }}\left( M \right)\) và \(M’ = {V_{\left( {O,k =  – 3} \right)}}\left( {{M_1}} \right)\). Ta có:

\(\left\{ \matrix{
{x_1} = x + 2 \hfill \cr
{y_1} = y + 0 \hfill \cr} \right.\) và

\(\left\{ \matrix{
x’ = – 3{x_1} \hfill \cr
y’ = – 3{y_1} \hfill \cr} \right. \Rightarrow \left\{ \matrix{
x’ = – 3\left( {x + 2} \right) \hfill \cr
y’ = – 3y \hfill \cr} \right.\)

Khi đó:

\(\left\{ \matrix{
x = {{x’} \over { – 3}} – 2 \hfill \cr
y = {{y’} \over { – 3}} \hfill \cr} \right.\)

Thế x, y theo x’, y’vào phương trình đường tròn (C) đã cho, ta có:

\({\left[ {\left( { – {{x’} \over 3} – 2} \right) – 1} \right]^2} + {\left[ {\left( { – {{y’} \over 3}} \right) – 2} \right]^2} = 9\)

\(\eqalign{
& \Leftrightarrow {\left( { – {{x’} \over 3} – 3} \right)^2} + {\left( { – {{y’} \over 3} – 2} \right)^2} = 9 \cr
& \Leftrightarrow {\left( {x’ + 9} \right)^2} + {\left( {y’ + 6} \right)^2} = 81 \cr} \)

Vậy \({\left( {x + 9} \right)^2} + {\left( {y + 6} \right)^2} = 81\) là phương trình của đường tròn ảnh (C’) của đường tròn (C) qua phép dời hình đã cho.

Cách 2.

Đường tròn (C) có tâm \(I\left( {1;2} \right)\), bán kính R = 3.

– Qua \({T_{\overrightarrow v }}\) : (C) biến thành đường tròn (C1) tâm I1, có tọa độ là :

\(\left\{ \matrix{
{x_1} = 1 + 2 = 3 \hfill \cr
{y_1} = 2 + 0 = 2 \hfill \cr} \right.\) , bán kính R1 = 3

– Qua phép vị tự \({V_{\left( {O,k =  – 3} \right)}}\), (C1) biến thành đường tròn (C’) tâm I’, có tọa độ là :

\(\left\{ \matrix{
x’ = – 3{{\rm{x}}_1} = – 9 \hfill \cr
y’ = – 3{y_1} = – 6 \hfill \cr} \right.\) , bán kính \(R’ = \left| k \right|{R_1} = 9\)

Vậy phương trình đường tròn (C’) là: \({\left( {x + 9} \right)^2} + {\left( {x + 6} \right)^2} = 81\).

Đề 2 trang 42 Sách bài tập (SBT) Hình học 11

Câu 1. (5 điểm )

 Trong mặt phẳng Oxy cho đường tròn \({\left( {x – 1} \right)^2} + {\left( {y – 2} \right)^2} = 16\). Viết phương trình đường tròn ảnh của đường tròn đã cho qua phép quay tâm O là gốc tọa độ với góc quay 90°.

Câu 2. (5 điểm )

Trong mặt phẳng Oxy cho ba đường tròn:

\(\left( {{C_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y – 3} \right)^2} = 4\)

\(\left( {{C_2}} \right):{\left( {x + 3} \right)^2} + {\left( {y – 4} \right)^2} = 4\)

\(\left( {{C_3}} \right):{\left( {x + 1} \right)^2} + {\left( {y – 5} \right)^2} = 5\)

Trong hai đường tròn (C2) và (C3), đường tròn nào là ảnh của (C1) qua phép tịnh tiến. Xác định phép tịnh tiến này.

Giải:

Câu 1.

(C) có tâm I(1; 2), bán kính R = 4. Gọi I’, R’ lần lượt là tâm và bán kính của đường tròn ảnh, ta có:

\(I’ = {Q_{\left( {O,{{90}^0}} \right)}}\left( I \right) \Leftrightarrow \left\{ \matrix{
x’ = – y = – 2 \hfill \cr
y’ = x = 1 \hfill \cr} \right.\) và R’ = 4

Vậy phương trình (C’) là \({\left( {x + 2} \right)^2} + {\left( {y – 1} \right)^2} = 16\).

Câu 2.

(C1) có tâm \({I_1}\left( {1;3} \right)\), bán kính R1 = 2

(C2) có tâm \({I_2}\left( { – 3;4} \right)\), bán kính R2 = 2

(C3) có tâm \({I_3}\left( { – 1;5} \right)\), bán kính \({R_3} = \sqrt 5 \)

– Vì \({R_3} \ne {R_1}\) nên (C3)  không thể là ảnh của (C1) qua phép tịnh tiến

– Do \({R_2} = {R_1}\) nên (C2)  là ảnh của (C1) qua phép tịnh tiến \({T_{\overrightarrow v }}\), với \(\overrightarrow v  = \overrightarrow {{I_1}{I_2}}  = \left( { – 4;1} \right)\).

Đề 3 trang 42 Sách bài tập (SBT) Hình học 11

Câu 1. (5 điểm )

Cho tam giác ABC . Gọi F là phép dời hình có được bằng cách thực hiện liên tiếp các phép tịnh tiến theo thứ tự \({T_{\overrightarrow {AB} }},{T_{\overrightarrow {BC} }},{T_{\overrightarrow {CA} }}\). Hỏi F là phép biến hình gì?

Câu 2. (5 điểm )

Trong mặt phẳng Oxy cho hai đường tròn:

\(\left( {{C_1}} \right):{\left( {x – 1} \right)^2} + {\left( {y + 3} \right)^2} = 4\)

\(\left( {{C_1}} \right):{\left( {x + 2} \right)^2} + {\left( {y – 6} \right)^2} = 16\)

Tìm phép vị tự biến (C1) thành (C2)

Giải:

Câu 1.

Lấy M là điểm bất kì.

Gọi \({M_1} = {T_{\overrightarrow {AB} }}\left( M \right),{M_2} = {T_{\overrightarrow {BC} }}\left( {{M_1}} \right),M’ = {T_{\overrightarrow {CA} }}\left( {{M_2}} \right)\)

Ta có

\(\left\{ \matrix{
\overrightarrow {M{M_1}} = \overrightarrow {AB} \hfill \cr
\overrightarrow {{M_1}{M_2}} = \overrightarrow {BC} \hfill \cr
\overrightarrow {{M_2}M’} = \overrightarrow {CA} \hfill \cr} \right.\)

Cộng ba đẳng thức trên vế theo vế, ta có

\(\overrightarrow {M{M_1}}  + \overrightarrow {{M_1}{M_2}}  + \overrightarrow {{M_2}M’}  = \underbrace {\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CA} }_{\overrightarrow 0 }\)

\(\eqalign{
& \overrightarrow {MM’} = \overrightarrow 0 \cr
& M’ \equiv M \cr} \)

Phép biến hình F trên biến M thành \(M’ \equiv M\), với mọi M (F được gọi là phép đồng nhất).

Câu 2.

 (C1) có tâm \({I_1}\left( {1; – 3} \right)\), bán kính R1 = 2

(C2) có tâm \({I_2}\left( { – 2;6} \right)\), bán kính R2 = 4

Gọi \({V_{\left( {I;k} \right)}}\) là phép vị tự biến (C1) thanh (C2).

Ta có:

\(\left\{ \matrix{
\overrightarrow {I{I_2}} = k\overrightarrow {I{I_1}} & \left( 1 \right) \hfill \cr
\left| k \right| = {{{R_2}} \over {{R_1}}} & \left( 2 \right) \hfill \cr} \right.\)

\(\left( 2 \right) \Leftrightarrow \left| k \right| = {{{R_2}} \over {{R_1}}} = {4 \over 2} = 2 \Leftrightarrow k =  \pm 2\)

+ Trường hợp k = 2

\(\left( 1 \right) \Leftrightarrow \left\{ \matrix{
– 2 – {x_I} = 2\left( {1 – {x_I}} \right) \hfill \cr
6 – {y_I} = 2\left( { – 3 – {y_I}} \right) \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_I} = 4 \hfill \cr
{y_I} = – 12 \hfill \cr} \right.\)

Ta được phép vị tự thứ nhất có tâm I(4; -12) tỉ số vị tự là k = 2

+ Trường hợp k = -2

\(\left( 1 \right) \Leftrightarrow \overrightarrow {I{I_2}}  =  – 2\overrightarrow {I{I_1}} \)

\( \Leftrightarrow \left\{ \matrix{
– 2 – {x_I} = – 2\left( {1 – {x_I}} \right) \hfill \cr
6 – {y_I} = – 2\left( { – 3 – {y_I}} \right) \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_I} = 0 \hfill \cr
{y_I} = 0 \hfill \cr} \right.\)

Ta được phép vị tự thứ hai có tâm I(0; 0), tỉ số vị tự là k = -2

Bài học cùng chương hoặc môn:

  1. Đề toán tổng hợp Chương 1 – SBT hình lớp 11
  2. Giải SBT Ôn tập chương 1. Phép dời hình và phép đồng dạng trong mặt phẳng – Hình học 11
  3. Giải SBT Bài 8. Phép đồng dạng – chương 1 hình học 11
  4. Giải SBT Bài 7. Phép vị tự chương 1 hình học 11
  5. Giải SBT bài 6. Khái niệm về phép dời hình và hai hình bằng nhau chương 1 hình học 11
  6. Giải SBT Bài 5. Phép quay – chương 1 hình học 11
  7. Giải SBT bài 4. Phép đối xứng tâm chương 1 hình học 11
  8. Giải SBT Bài 3. Phép đối xứng trục – chương 1 hình học 11
  9. Giải SBT Bài 1+Bài 2. Phép biến hình. Phép tịnh tiến – Chương 1 Hình học 11

Chuyên mục: Giải sách bài tập Toán 11 Thẻ: Giai SBT chuong 1 hinh hoc 11

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Primary Sidebar

Lớp 12 – Lớp 11 

Chuyên đề mới:

Chuyên đề ôn thi lớp 9 tuyển sinh lớp 10

Sách Toán © 2015 - 2018 - Giải bài tập Toán, Lý, Hóa, Sinh, Anh, soạn Văn, Sách tham khảo và Đề thi.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn