• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Quốc gia Môn Toán
  • Trắc nghiệm toán 12
  • Máy tính

Đề bài: Tìm số phức z thỏa mãn \(z + z.\overline z = \frac{i}{2}\).

Đăng ngày: 04/06/2019 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Phép toán với số phức Tag với:Trắc nghiệm số phức thông hiểu


Câu hỏi:

Tìm số phức z thỏa mãn \(z + z.\overline z = \frac{i}{2}\).

  • A. \(z = \frac{1}{2} + \frac{1}{2}i\)
  • B. \(z = – \frac{1}{2} + \frac{1}{2}i\)
  • C. \(z= \frac{1}{2} + \frac{3}{2}i\)
  • D. \(z = – \frac{1}{2}i\)

Đáp án đúng: B

Đặt \(z = x + yi\,(x,y \in R)\)

\(z + z.\overline z = \frac{i}{2} \Leftrightarrow x + iy + {x^2} + {y^2} = \frac{i}{2}\)

\(\Leftrightarrow \left\{ \begin{array}{l} x + {x^2} + {y^2} = 0\\ y = \frac{1}{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = – \frac{1}{2}\\ y = \frac{1}{2} \end{array} \right.\)

\(\Rightarrow z = – \frac{1}{2} + \frac{1}{2}i\)

Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Thuộc chủ đề:Trắc nghiệm Phép toán với số phức Tag với:Trắc nghiệm số phức thông hiểu

Bài liên quan:

  1. Đề bài: Cho hai số phức \({z_1},{z_2}\) là các nghiệm của phương trình \({z^2} + 4{\rm{z}} + 13 = 0.\) Tính mô đun của số phức \({\rm{w}} = \left( {{z_1} + {z_2}} \right)i + {z_1}{z_2}.\)
  2. Đề bài: Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
  3. Đề bài: Giải phương trình \(\left( {iz – 1} \right)\left( {z + 3i} \right)\left( {\overline z  – 2 + 3i} \right) = 0\) trên tập hợp số phức.
  4. Đề bài: Gọi A, B là hai điểm biểu diễn nghiệm số phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.
  5. Đề bài: Cho hai số thực b và c \(\left( {c > 0} \right).\) Ký hiệu A, B là hai điểm của mặt phẳng phức biểu diễn hai nghiệm của phương trình \({z^2} + 2b{\rm{z}} + c = 0.\) Tìm điều kiện của b và c sao cho OAB là tam giác vuông (O là gốc tọa độ).
  6. Đề bài: Gọi \({z_1},{z_2}\) là nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính giá trị của biểu thức \({\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\)
  7. Đề bài: Gọi z1, z2 là hai nghiệm phức của phương trình \({z^2} – 2z + 2 = 0\). Tính \(M = z_1^{200} + z_2^{200}.\)
  8. Đề bài: Gọi \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} – z + 1 = 0.\) Tính giá trị của biểu thức \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
  9. Đề bài: Gọi A, B là hai điểm biểu diễn nghiệm số phức của phương trình \({z^2} + 2z + 10 = 0\). Tính độ dài đoạn thẳng AB.
  10. Đề bài: Biết rằng phương trình \({z^2} + bz + c = 0\left( {b,c \in \mathbb{R}} \right)\) có một nghiệm phức là \({z_1} = 1 + 2i\). Khi đó:
  11. Đề bài: Cho z0 là nghiệm của phương trình \({z^2} – 13z + 45 = 0\).  Tính tổng \({z_0} + \overline {{z_0}}\).
  12. Đề bài: Tìm số nghiệm của phương trình \({z^3} – 2\left( {i + 1} \right){z^2} + 3iz + 1 – i = 0\).
  13. Đề bài: Giải phương trình \({z^2} + 2z + 2 = 0\) trên tập số phức ta được hai nghiệm \({z_1},\,{z_2}\). Tính tích \({z_1}.{z_2}\). 
  14. Đề bài: Biết số phức \(z_1=1+i\) và \(z_2\) là hai nghiệm phức của phương trình \({z^2} + bz + c = 0.\) Tìm môdun của số phức \(w = \left( {{{\bar z}_1} – 2i + 1} \right)\left( {{{\bar z}_2} – 2i + 1} \right).\) 
  15. Đề bài: Kí hiệu \(z_0\) là nghiệm phức có phần ảo dương của phương trình Trên mặt phẳng toạ độ, điểm nào dưới đây là điểm biểu diễn số phức 

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2022) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.