• Skip to main content
  • Skip to secondary menu
  • Bỏ qua primary sidebar
Sách Toán – Học toán

Sách Toán - Học toán

Giải bài tập Toán từ lớp 1 đến lớp 12, Học toán online và Đề thi toán

  • Môn Toán
  • Học toán
  • Sách toán
  • Đề thi
  • Ôn thi THPT Toán
  • Trắc nghiệm Toán 12
  • Máy tính

Cho số phức \(z = \left( {3q – 2m} \right) + \left( {5m – 2q} \right)i\) với \(m,q\) là các số thực thỏa mãn \(0 \le m \le q \le 1\), và số phức \(w\) thỏa mãn \(\left| {w – 2 + 3i} \right| = \left| {{\rm{w}} – 4 – i} \right|\). Giá trị nhỏ nhất của \(\left| {z – w} \right|\) bằng

Đăng ngày: 16/05/2021 Biên tập: admin Thuộc chủ đề:Trắc nghiệm Số phức Tag với:Cau 49 cuc tri so phuc, MAX - MIN SO PHUC

adsense
Câu hỏi:

Cho số phức \(z = \left( {3q – 2m} \right) + \left( {5m – 2q} \right)i\) với \(m,q\) là các số thực thỏa mãn \(0 \le m \le q \le 1\), và số phức \(w\) thỏa mãn \(\left| {w – 2 + 3i} \right| = \left| {{\rm{w}} – 4 – i} \right|\). Giá trị nhỏ nhất của \(\left| {z – w} \right|\) bằng

A. \(\frac{1}{{\sqrt 5 \;}}\) 

B. \(\frac{6}{{\sqrt 5 \;}}\) 

C. \(\;\frac{2}{{\sqrt 5 \;}}\). 

D. \(0\)

adsense

LỜI GIẢI CHI TIẾT

Ta thấy \(z = m\left( {1 + 3i} \right) + \left( {q – m} \right)\left( {3 – 2i} \right)\). Nếu gọi \(A,B,\;M\) là các điểm biểu diễn của số phức \(1 + 3i\), \(3 – 2i\), \(z\) thì \(\overrightarrow {OM}  = m\overrightarrow {OA}  + \left( {q – m} \right)\overrightarrow {OB} \) với với \(m,q\) là các số thực thỏa mãn \(0 \le m \le q \le 1\).

Với \(q = 0\) thì \(M \equiv O\); Với \(1 \ge q > 0\) thì \(\frac{{\overrightarrow {OM} }}{q} = \overrightarrow {OM’}  = \frac{m}{q}\overrightarrow {OA}  + \left( {1 – \frac{m}{q}} \right)\overrightarrow {OB} \), suy ra \(M’\) nằm trên đoạn \(AB\) và \(M\) nằm trên đoạn \(OM’\). Các khẳng định cho thấy \(M\) nằm trên hình tam giác \(OAB\) hay tập điểm biểu diễn số phức \(z\) là hình tam giác \(OAB\).

Gọi \(Q\) là điểm biểu diễn của số phức \(w\), từ giả thiết suy ra \(Q\) nằm trên đường thẳng \(\left( d \right)\;:x + 2y – 1 = 0\) hay tập điểm biểu diễn \(w\) là đường thẳng \(d\).

Mỗi giá trị \(\left| {z – w} \right|\) sẽ tương ứng 1-1 với khoảng cách của 1 điểm \(M\) nằm trên hình tam giác \(OAB\) và điểm \(Q\) nằm trên đường thẳng \(\left( d \right)\). Giá trị \(\left| {z – w} \right|\) nhỏ nhất tương ứng với \(MQ\) nhỏ nhất.

<p> Cho số phức (z = left( {3q - 2m} right) + left( {5m - 2q} right)i) với (m,q) là các số thực thỏa mãn (0 le m le q le 1), và số phức (w) thỏa mãn (left| {w - 2 + 3i} right| = left| {{rm{w}} - 4 - i} right|). Giá trị nhỏ nhất của (left| {z - w} right|) bằng</p>
<!-- /wp:paragraph --> <!-- wp:paragraph --> 1

Quan sát hình thấy\(MQ\) nhỏ nhất khi \(MQ = 0\) hay \(M\),\(Q\) là các điểm chung của \(d\) và hình tam giác \(OAB\)


XEM THÊM
============== Chuyên đề Số Phức ôn thi THPT Quốc gia

Thuộc chủ đề:Trắc nghiệm Số phức Tag với:Cau 49 cuc tri so phuc, MAX - MIN SO PHUC

Bài liên quan:

  1. (Chuyên Lam Sơn 2022) Cho \(M,N,P\) lần lượt là các điểm biểu diễn số phức \({z_1},{z_2},{z_3}\) thỏa mãn điều kiện \(\left| {5{z_1} + 9 – 3i} \right| = 5\left| {{{\bar z}_1}} \right|,\left| {{z_2} – 2} \right| = \left| {{z_2} – 3 – i} \right|,\left| {{z_3} + 1} \right| + \left| {{z_3} – 3} \right| = 4\). Khi \(M,N,P\) không thẳng hàng, giá trị nhỏ nhất của nửa chu vi \(p\) của tam giác \(MNP\) là

  2. (Chuyên Lê Quý Đôn – Điện Biên – 2022) Xét các số phức \(z = a + bi\,\,(a,b \in \mathbb{R})\) thỏa mãn \(|z – 3 + 2i| = \sqrt 5 \). Tính \(P = a – b\) khi\(|z – 3 – 3i| + |z – 7 – i|\) đạt giá trị lớn nhất.

  3. (Chuyên Vinh – 2022) Biết phương trình \({z^2} + mz + {m^2} – 2 = 0\) ( \(m\) là tham số thực) có hai nghiệm phức \({z_1},{z_2}\). Gọi \(A,B,C\) lần lượt là điểm biểu diễn các số phức \({z_1},{z_2}\) và \({z_0} = i\). Có bao nhiêu giá trị của tham số \(m\) để diện tích tam giác \(ABC\) bằng 1 ?

  4. (Sở Bắc Giang 2022) Giả sử \({z_1};{z_2}\) là hai trong các số phức \(z\) thỏa mãn \((z – 6)(8 – i.\bar z)\) là số thự

    C. Biết rằng \(\left| {{z_1} – {z_2}} \right| = 6\). Giá trị nhỏ nhất của \(\left| {{z_1} + 3{z_2}} \right|\) bằng

  5. (Sở Bạc Liêu 2022) Cho các số phức \(z\), \(w\) thỏa mãn \(\left| z \right| = 2\), \(\left| {w – 3 + 2i} \right| = 1\) khi đó \(\left| {{z^2} – 2zw – 4} \right|\) đạt giá trị lớn nhất bằng

  6. (THPT Nho Quan A – Ninh Bình – 2022) Trên tập hợp các số phức, xét phương trình \({z^2} + 2mz – m + 12 = 0\) ( \(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để phương trình đó có hai nghiệm phân biệt \({z_1},{z_2}\) thỏa mãn \(\left| {{z_1}} \right| + \left| {{z_2}} \right| = \sqrt 2 \left| {{z_1} – {z_2}} \right|?\)

  7. (Chuyên Vinh – 2022) Xét các số phức \(z\) và \(w\) thỏa mãn \(|z| = |w| = 1\) và \(|z + w| = \sqrt 2 \). Giá trị nhỏ nhất của biểu thức \(P = |zw + 2i(z + w) – 4|\) bằng

  8. (THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho hai số phức \(z\) và \(w\) thay đổi thỏa mãn các điều kiện \(\left| {z + 1 + i} \right| = \left| z \right|\) và \(\left| {w – 3 – 4i} \right| = 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = \left| {z – w – 1 – i} \right|\).

  9. (THPT Lê Thánh Tông – HCM-2022) Có tất cả bao nhiêu số phức \(w\) thỏa mãn điều kiện \(2w\overline w = 1\) và \(\frac{w}{{\overline {{w^2}} }}\) là số thuần ảo?

  10. (THPT Lê Thánh Tông – HCM-2022) Xét hai số phức \({z_1},{z_2}\) thỏa mãn các điều kiện \(\left| {{z_1}} \right| = 2,\left| {{z_2}} \right| = \sqrt 3 ,\left| {{z_1} + {z_2}} \right| = \sqrt 5 \). Giá trị nhỏ nhất của biểu thức \(P = \left| {3{z_1} – {z_2} – 10 + 5i} \right| + 2\) bằng

  11. (THPT Nho Quan A – Ninh Bình – 2022) Gọi \(S\) là tập hợp tất cả các số phức \(z\) sao cho \(iz.\bar z + (1 + 2i)z – (1 – 2i)\bar z – 4i = 0\) và \(T\) là tập hợp tất cả các số phức \(w\) có phần thực khác 0 sao cho \(\frac{w}{{\bar w + 6i}}\) là số thự

    C. Xét các số phức \({z_1},{z_2} \in S\) và \(w \in T\) thỏa mãn \(\left| {{z_1} – {z_2}} \right| = 2\sqrt 5 \) và \(\frac{{w – {z_1}}}{{{z_2} – {z_1}}} = \frac{{\bar w – \overline {{z_1}} }}{{\overline {{z_2}} – \bar z}}\). Khi \(\left| {w – {z_1}} \right| \cdot \left| {w – {z_1}} \right|\) đạt giá trị nhỏ nhất thì \(\left| {w – {z_1}} \right| + \left| {w – {z_1}} \right|\) bằng

  12. (THPT Nguyễn Tất Thành-Đh-SP-HN-2022) Cho số phức \(z\) thay đổi thỏa mãn \(\left| {z – 1 + 3i} \right| = 2\)và số phức \(w = \left( {1 – 2i} \right)z\). Biết rằng tập hợp các điểm biểu diễn số phức \(w\) là một đường tròn \(\left( C \right)\) trong mặt phẳng \(\left( {Oxy} \right)\). Tìm bán kính \(R\)của đường tròn \(\left( C \right)\).

  13. (Chuyên Vinh – 2022) Gọi \(S\) là tập hợp tất cả các số phức \(z\) thỏa mãn điều kiện \(z \cdot \bar z = |z + \bar z|\). Xét các số phức \({z_1},{z_2} \in S\) sao cho \(\left| {{z_1} – {z_2}} \right| = 1\). Giá trị nhỏ nhất của biểu thức \(P = \left| {{z_1} – \sqrt 3 i} \right| + \left| {\overline {{z_2}} + \sqrt 3 i} \right|\) bằng

  14. (THPT Phù Cừ – Hưng Yên – 2022) Cho số phức \(z\) và số phức \(w = (z – i)(\bar z + i) + 2z – 3i\) thỏa mãn \(\left| {w – {i^{2022}}} \right| – \left| {{i^{2023}} \cdot \bar w – 1} \right| = 0\). Giá trị lớn nhất của biểu thức \(T = |z – 3 + i{|^2} + |\bar z + 1 – 3i{|^2}\) bằng \(m + n\sqrt 5 \) với \(m,n \in \mathbb{R}\). Tính \(P = m.n\).

  15. (Sở Hà Tĩnh 2022) Cho số phức \(z = x + yi,\left( {x,y \in \mathbb{R}} \right)\) thỏa mãn \(\left| {z + \overline z – 2} \right| + 3\left| {z – \overline z + 4i} \right| \le 6\) và \(\left| {z – 1 – i} \right| \le \left| {z + 3 + i} \right|\). Gọi \(M,m\) là giá trị lớn nhất và nhỏ nhất của biểu thức \(P = 2x + 3y + 5\). Khi đó \(M + m\) bằng:

Reader Interactions

Trả lời Hủy

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Sidebar chính

MỤC LỤC




Booktoan.com (2015 - 2023) Học Toán online - Giải bài tập môn Toán, Sách giáo khoa, Sách tham khảo và đề thi Toán.
THÔNG TIN:
Giới thiệu - Liên hệ - Bản quyền - Sitemap - Quy định - Hướng dẫn.